
Making Home Speech Therapy Fun
A case study in assistive games design

John M. Chambers
Dept. of Math and Computer Science
University of South Carolina Aiken

Aiken, South Carolina, USA
jmchambers90@gmail.com

Zachary Rubin, Sri Kurniawan
Dept. of Computer Engineering
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, California, USA

zarubin@ucsc.edu, srikur@soe.ucsc.edu

Abstract—This paper details and evaluates the process
used to create an iOS game to motivate children who
have had reparative surgery for cleft lip or cleft palate
and who are subsequently participating in speech
therapy to do their home therapy exercises.

 Keywords—cleft palate; assistive games; speech therapy

I. A NOTE ON CITATION

 In the interest of completion in the time allotted, sources
are often not cited. Instead, the most important ones have
been listed at the end. Thus, uncited ideas are not necessarily
original to the authors.

II. MOTIVATION

 Across the world, children born with cleft lip or cleft
palate struggle in their speech development, and the intensity
of their struggle depends on which of the two defects they
experience.

Those with cleft lip are typically eligible to have their
defect repaired in the first week of life, and if it is indeed
repaired, the children develop normally. Unfortunately, not
all of these children have access to the surgery, so their
speech develops to compensate for the defect.

In contrast, because of the growth patterns of the
mouth, those with cleft palate are ineligible to have
reparative surgery until they are two years old. Thus, their
speech also develops to compensate.

In general, the longer one waits, the worse the
condition becomes. As with learning to play a musical
instrument, children progressively lose their capacity for
language learning and speech development as they grow
older.

This window between 0 and 2 years is especially
important. It is during this period that children learn to form
syllables and to combine them into words. In fact, the
“babbling” that is often observed in children of this age is
not mere play; it is crucial practice in syllable formation.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 This research was supported by NSF Grant #1156606.	

It is during this period that the defects begin having a
negative effect. Children who suffer from the defects learn
to produce their syllables as best they can. But because their
anatomy is different, they cannot produce the sounds in the
same way as normal children. The approximations they use
instead are known as “compensatory structures.”

After these children undergo reparative surgery, since
they have already passed the normal period for learning to
produce syllables, they do not easily adapt to their new
anatomy. Thus, instead of naturally adopting normal
pronunciations of which they are now physically capable,
they usually keep using the compensatory alternatives with
which they are already familiar.

Speech therapy is commonly employed to correct this
problem. For the purposes of this paper, command and
control is the specific therapy method used. Children usually
spend between 1 and 2 hours a week with their therapists,
and they are given exercises to work on at home between
sessions. These exercises usually focus on a particular
problematic vocal structure, such as plosives of glottal stops.

Unfortunately, these exercises are highly redundant and
boring, so they are unable to keep the children’s attention.
As a result, the children often actively resist doing the
exercises, which ultimately leads to them not getting done.
Sadly, the longer they go without performing their exercises,
the less their potential for full recovery becomes.
Conversely, again following the musical instrument analogy,
home practice between sessions can lead to significantly
faster improvement.

Therefore, to encourage the children to practice and,
thus, to guarantee a faster and better recovery, the
researchers disguised the home exercises as a voice-
controlled iOS (e.g. iTouch, iPhone) game. The target age
group included children from 2 to 5 years of age.

III. PROCESS OVERVIEW

 The entire process from initial training to study
development took approximately 3 months. The first month
was devoted to introducing the junior researcher to human-
computer interaction, developmental psychology, and the
iOS platform. The second month included requirements
development; a study of popular recent voice-controlled,

iOS, and children’s games; and practical training in Xcode
(the IDE for iOS and other Apple OSs). The final month was
devoted to storyboarding and writing, iOS game platforms
research and training, graphical resource generation, game
engine design and implementation, and study design and
legal preparation.

IV. PREPARATION

 The junior researcher surveyed HCI, developmental
psychology, and iOS programming to prepare for the
project.

A. HCI

For this fundamental area, chapters 1-6 in [1], as well as
[2], were used and are recommended for the preparation of
future researchers in similar projects. A number of helpful
ideas are drawn from these sources.

First is low-fidelity (or “lo-fi”) prototyping, which
essentially involves the use of everyday office and art
supplies such as index cards and stickers to develop and test
new user interfaces. Its more advanced relative is high-
fidelity (or “hi-fi”), which, in the case of computer
interfaces, involves creating an actual computer program to
demonstrate the proposed final app’s look and feel.

Lo-fi has a number of advantages over hi-fi. First and
most importantly, it allows flaws to be discovered and
eliminated early. Flaws correction becomes increasingly
difficult as the project gets farther along, so early flaw
elimination prevents the unnecessary waste of effort. The
other major advantage this method offers is preventing
supervisors from thinking the project is farther along than it
actually is.

Another helpful idea from these sources is the interface
metaphor. These use or combine concepts with which the
user is familiar to help them understand an application’s
purpose. Mac OS’s Time Machine is a fine example. It is
essentially just a backup and restore mechanism, but its
metaphor suggests to its users that it can take the computer
“back in time” to a previous state, such as before they got
that virus. In essence, a good metaphor colors the user’s
perception of either how a program works or what it does. In
this project, the best example of an interface metaphor is the
“cue” described below.

A third idea is being entirely user-centered. It suggests
that any interface should be adapted to the user and his/her
everyday habits, perceptions, ideas, and expectations rather
than forcing the user to adapt to it. Said differently, the
interface designer must be careful to always understand and
interpret the interface from the user’s perspective and not
from his/her own.

Consequently, it is imperative that users be involved in
the design process as early and as much as possible.
Interviews and surveys of the target user group are essential
to gain a thorough understanding of how they think and
work, which better informs the requirements generation and
prototyping phases. And consistent user testing throughout

the prototyping process ensures the product truly conforms
to its users.

In the current project, the user-centered approach involves
close contact with and study of the children and their parents
and therapists. One example of this is the researchers’ effort
to understand the problem-solving potential of children such
that the challenges they include in the game are neither too
difficult to solve nor too simple to be entertaining.

A number of other concepts in the early chapters of [1] are
also worth noting. In particular, the various interaction types
(i.e. instructing, conversing, manipulating, and exploring)
described in Chapter 2 are a good source of inspiration for
thinking about several fundamentally different game
designs. The disambiguation in that chapter between models,
theories, and frameworks may also be of interest to the
reader. However, in the interest of space, these are left for
the reader’s exploration.

B. Developmental Psychology

Study of this area helped to further enhance understanding
of how game challenges should be designed. Chapters 1-5
and 9 in [3] were used, but the reader is advised to exclude
Chapters 2-4 in his/her own study. Obviously, there are a
number of important concepts specifically relevant to the
project in this book.

1) Chapter 1: First are the implications of some of the
most prominent historical models: the ethological, the
psychosocial, the learning, and the cognitive-developmental.
The ethological suggests simply that there are different kinds
of learning at different ages. Erikson’s psychosocial model
says that each stage of life has a unique crisis that must be
overcome for successful development in the long term. For 1
to 3-year-olds, that crisis is realizing one’s autonomy and
ability to make decisions, as well as learning to deal with
shame and doubt. For 3 to 6-year-olds, this crisis is learning
to try new things and being able to handle failure.

For the learning model, there are several different
approaches and facets: conditioning, imitation, social
cognitive, and self-efficacy. Conditioning is simply the idea
that the consequences of one’s behavior will determine
future behavior, and it has both a negative form in which
wrong actions are punished and a positive form in which
good actions are rewarded. In contemporary America—and
particularly in games for children—positive reinforcement
seems to be the preferred conditioning method.

The second facet of learning, imitation, is the simply idea
of “monkey see, monkey do.” That is, it is the simple
copying of another’s behavior. The social-cognitive facet is
simply a more constrained conception of imitation. In it, it is
only the rewarded and approved behaviors (such as those of
the smart, talented, and popular people) which are imitated.

Thus, in the game’s design, it is important to consider
how deeply to conform with, or to give the impression of
conforming with, a certain society’s (whether real or not)
values. Though there is a strong contemporary current in
favor of individualism and against caving to peer pressure,
the simple fact is that offering approval works, so it remains
a possible tool towards the end of teaching these children.

The final dimension of learning is self-efficacy—the idea
that experience shapes children’s beliefs about their own
abilities. The implication for game design in the current
context is two-fold. First of all, because these children have
difficulty speaking correctly, they are unlikely to have faith
in themselves to improve. Thus, it is imperative that the
game allow for tangible improvements quickly to build up
the children’s confidence in themselves and consequent
ability to improve.

The third historical developmental model is that of Piaget.
The relevant component of his theory is his description of
the Preoperational stage, which he says lasts from 2 to 6
years of age. He claims that during this period, children
learn symbols (i.e. words and numbers) to represent aspects
of the world, but they relate to the world only through their
own perspectives. One tangible example of this latter idea
given in [2] is that of 5-year-olds not being able to describe
how a certain object looks from another person’s
perspective. Though these components alone are helpful in
children’s games design, an examination of the earlier and
later stages of Piaget’s theory serve to better inform the
reader what children are already capable of in the target age
group as well as what they are not yet capable of.
 A few other ideas beyond the historical models in Chp. 1
are also of note. First, it must be noted that children cannot
be thoroughly shaped by external influence, for they
inevitably have influence on their own development. For the
game, what this means is that the kids cannot be forced to
like and understand whatever game design is used. Instead,
the game design must adapt to their tastes (e.g. in game
mechanics) and capacities for understanding. In many ways,
this is simply a reiteration of the user-centered principle.
 The second supplementary idea worth noting from the
chapter is that, during studies, it is imperative that the
researchers not allow their observation methods to corrupt
reality. In other words, it is the natural behavior that is of
interest and not the behavior that is distorted by the artificial
environmental factors created by the observation. Thus, for
example, it is preferable during studies to not remove
children to a special room for observation and, instead, to
observe them where they would otherwise normally be.
 Essentially, what this means for the project is that studies
must be crafted so as not to introduce any unnecessary
conditions to the study environment which might
inadvertently distort results. More specifically, it would be
most preferable to observe a child’s use of the game during
regular practice sessions with their parents rather than at
another and thus unusual time and place.
 2) Chapter 5: A number of observations regarding
sensory preference and ability, perception, and motor
development are helpful to the project.
 First, for auditory considerations, it is important to note
that pitch range is limited in younger children, but that the
range of human speech is usually safe. Also, as far as music
is concerned, young children prefer consonant (happy-
sounding) melodies, are able to recognize rhythmic
structures, and will sometimes produce regular body
movements along with their perceptions of those structures.

 As for visual considerations, they enjoy looking at
patterns, and prefer the colors red and blue over others.
 Lastly in the sensory department, children pay more
attention to multi-modal and redundant presentations of
information than they do singular presentations. In fact, they
even process it better. Thus, within the game, it is important
to appeal to and engage as many senses as possible to ensure
maximum attention and understanding.
 There are also a number of important considerations in
perception and attention. First and foremost, children prefer
new stimuli over familiar ones, and in a phenomenon known
as habituation, they usually tune out the redundant. Second,
in general, they very much enjoy and are able to pay more
attention to movement. Third, staying focused is typically a
very demanding exercise. Fourth, they don’t adapt to new
rules well. And last, they find it difficult to filter out
distractions; therefore, it is important to make relevant
information more obvious and salient.
 Finally, in the way of motor development, children
typically need to master the components of a difficult motion
before they can master the whole. These processes are
known as differentiation and integration. For the game, the
general implication is that, unless the difficulty is
specifically part of the challenge, it is better to demonstrate
or teach the components of a particularly difficult game
mechanic or syllables of a word before requiring its full use.
 3) Chapter 9: Possibly the most relevant among all the
chapters is that on language and communication, and the
notes from it are equally so.
 First, speech development is a largely imitation-based
process. Therefore, it is important that proper syllable
pronunciations be demonstrated both well and frequently.

Second, with word teaching, it is important to visually
demonstrate or point out the object being referred to. And,
on a related note, it important to be sensitive to the
vocabulary sizes at different ages.

Vocabulary development takes an interesting path. Before
their first birthday, children begin to gesture, which
demonstrates their ability to differentiate different objects.
By 15 months, half of all objects are referred to by names
rather than gestures, and between 2 and 3 words per week
are being learned. Around 18 months (though it can be as
early as 14 months and as late as 22 months), a “naming
explosion” occurs during which the vocabulary rapidly
expands with a particular emphasis in names of objects.
Average vocabulary size at this age is 75, but it can range
from less than 25 to more than 250. By 24 months, new
words are being added every day, with a few hundred
typically already known. And by 6 years, a typical
vocabulary includes more than 10,000.

As an aside, it should be noted that this so-called naming
explosion usually coincides with an expansion of cognitive
ability—especially the ability to express goals and
intentions.

A few semantic mistakes commonly made by 1 to 3-year-
olds could become a source of misunderstanding and
difficulty for them in playing the game. The first is
underextension, which is defining a word too narrowly, and
the second is overextension, which is defining a word too

broadly. Thus, children may understand any proper names of
characters as referring to their entire class or vice versa.

Another factor to be aware of with word definition is
shape bias. Because of this phenomenon, children tend to be
better able to differentiate between and to group objects by
class because of either different or similar shapes,
respectively.

Finally, it is notable that 3- and 4-year-olds are much less
likely to learn a word when the teacher (not necessarily
academic) appears unfamiliar with the word’s referent.

Factors possibly more notable than vocabulary size for
game design are the ages at which children can understand
scale models and maps. In general, 2½-year-olds are
completely incapable of connecting scale models to their
larger correspondents; however, as demonstrated by virtually
any child at play, they are not limited from identifying larger
and smaller members of the same class (such as real trains
and small plastic ones). As far as map reading is concerned,
this skill emerges naturally around 4 years age, but such
children are only are only capable of reading relatively
simple maps.

Syntactical structure and complexity are two more rather
significant considerations for game script. In essence,
linguistic complexity should match the ability of the age
group, being neither so simple as to bore, nor so complex as
to confuse.

Children’s early sentences (around 1½ years of age)
usually take one of several two-word forms: agent + action,
possessor + possession, action + object, agent + object,
action + location, entity + location, attribute + entity, and
demonstrative + entity. As they progress to 2½ and 3 years
of age, their sentences lengthen as they learn to use
grammatical morphemes such as the word ending “-ing”; the
articles “a,” “an,” and “the”; and auxiliary verbs like “am”
or “should.” Finally, between 3 and 6 years, children begin
to understand negation and embedded sentences (i.e.
dependent clauses). They also begin to understand passive
voice, but it is best to avoid this if possible, as full
understanding of passive voice does not develop until some
time in the elementary years.

As a final note on game script construction, it is best to
avoid using figurative language, as it often confuses younger
children.

C. iOS Programming

A number of different resources were used to teach the
junior researcher in the capabilities and use of the iOS
platform. [12] served to illuminate the true possibilities of
what could be done on the platform. [13] offered an
overview of the components necessary for the proper
functioning of an iOS app. And [11] provided the practical
education necessary for making the junior researcher a
capable iOS programmer.

For training of future researchers, it is recommended that
only the first four classes of [11] be used, as they are all that
is truly needed to establish functional familiarity with the
platform. Though later classes may certainly be of
assistance, it is important to avoid those that focus on UI

creation, as they are aimed more at business-type interfaces
that contain buttons, labels, tables, and text fields rather than
game-type UIs. [12] and [13], while certainly helpful, are
primarily auxiliary—not offering any information that’s
absolutely central to game design and programming. Thus,
they should be avoided unless needed for the purposes
described below.

2) iOS Technology Overview: As its name suggests, [12]
provides a survey of the full capabilities of iOS out of the
box. Discussion is included on which these features may be
of interest to the game designer or programmer and on how
they might be employed.

First, simply as a description of available tools, Xcode is
the IDE for all things iOS and Mac OS, and Instruments is a
handy performance analysis and debugging tool—though, it
should be noted, the latter was never used in the
development of the researchers’ game.

Within the platform, there are a number of technologies
which may at some point become useful in the game’s
development. The most prominent, storyboarding, is the
visual design and connection of regular views (i.e. windows
or UIs)—a feature which could potentially be used in any of
the game’s interfaces which use standard UI features like
labels, buttons, text boxes, and toolbars. Another feature,
documents, is a way of storing data in Apple iCloud and is
meant as a model for text documents. However, it could be
used to create multiple user profiles that can be shared
among all the users’ devices.

Multitasking is not multithreading, but is instead the
feature of iOS that allows multiple apps to run
simultaneously with one in the foreground and others in the
background. Unfortunately, it is necessary for programmers
to specifically define the behavior of their apps when
running in or transitioning between these states. However,
this definition need not be included until later in the
development process when the code base is more
established. For a more detailed discussion of how to
prepare an app for these, see [13], pp. 33-91.

Printing and file-sharing are two features that may be
useful for progress tracking and evaluation. Any iOS app
can print wirelessly with the right infrastructure—a feature
that could be used to print progress reports if desired. And
file-sharing allows an app’s Documents folder to be exposed
in iTunes 9 and above—a feature that could be used to
connect the game and a child’s progress and profile with a
desktop-based tracking, evaluation, or analysis app.

There are two possible notification technologies available.
App push notifications can be sent at any time from a remote
server. And local notifications can be issued by an app while
it is running in the background state, or it can schedule a
notification to go off at a specific time. The former could be
used to notify end users of new content, and the latter could
be used to remind them to do their exercises periodically.

Gesture recognizers can be used to detect complex finger
movements such as pinches and swipes. If touch-based input
is ever incorporated into the game, such supportive AI
would be highly beneficial.

Another form of supported input that might at some point
become helpful is the accelerometer, which measures the
motion of the device itself.

One rather special component which greatly expands the
potential for the game is the Game Kit. This framework
allows peer-to-peer engagement over Bluetooth, in-game
voice communication, turn-based matches with states stored
in iCloud, and a Game Center including aliases,
leaderboards, matchmaking, and achievements.

As an overview of iOS graphics technologies, Core
Graphics is primarily for 2D-vector and image-based
rendering, Core Animation is for animating views (not game
animation), Core Image is for video and still frame display,
Core Text is for text layout and rendering, and OpenGL ES
and GLKit are for 2D and 3D rendering straight from the
hardware. In general, OpenGL ES is better for apps
requiring high frame rates (though it is more complex to
program in), and Quartz (iOSs native drawing technology) is
easier for object-oriented people.

For audio technologies, Media Player is used for playing
tracks in iTunes; AV Foundation is for simple Objective-C
playback and recording; OpenAL is for positional audio;
Core MIDI is for playback of MIDI sound files (usually used
for music); and Core Audio is for vibration and buffering
and playback of multichannel local and streamed audio.
Note that Core Audio is the only framework that allows for
haptic feedback.

For speech-based input, there is unfortunately no native
speech recognition technology other than Siri, which
depends on a remote server. Because this presents a
possibility for lag as well as a dependency on having an
internet connection, it is not well-suited to this game’s
purposes.

As an aside, the speech-recognition technology used in
place of Siri is the combination platform OpenEars and
PocketSphinx. All speech-to-text translation in this platform
is done against a programmer-defined local vocabulary,
solving both of the problems inherent with Siri.

In the video department, Media Player can do either full-
or partial-screen playback, and AV Foundation can also do
playback as well as capture. Allowable video file types on
iOS include mov, mp4, m4v, and 3gp. These may be
important if the game ever ends up employing cut scenes.

Broadening out a bit, as far as programming is concerned,
automatic reference counting, block objects, and Grand
Central Dispatch may prove useful.

Automatic Reference Counting (ARC) is a feature
introduced in iOS 5 that reduces the amount of memory
management one has to do (reducing the need for retain and
release); a better explanation of its proper use can be
obtained in [11]. Doubtlessly, employing this technology
will reduce error and headache in the game’s development.

Block Objects are somewhat strange constructs that allow
instructions to be stored in a variable, passed around to
different parts of the program as such, and executed later.
An example and explanation of their use can be obtained in
[13] on pp. 55-56.

Grand Central Dispatch (GCD) actually makes extensive
use of block objects. Intended as a replacement for threads

and to eliminate the great headache and overhead inherent in
managing them, GCD proposes that all required tasks be
broken up into discrete units and assigned to pools for
execution by the system. These pools can either be queues
with a first-in-first-out design, or general pools out of which
any waiting task can be executed at random.

The aforementioned pools are all C-based (function-
based) technologies, but GCD does provide an Objective-C-
based portion that allows for more complex dependency
description among individual instruction object units. A
more detailed description of GCD can be found in [16].
Clearly, this replacement for multi-threading could serve the
game well.

As far as data is concerned, iOS provides SQLite, Core
Data, and rather elementary XML support. Regular files, of
course, are stored in the application’s bundle folder, but files
in this folder cannot be modified after shipped; it is thus
necessary to place any changing files in the app’s
Documents folder. SQLite, just as it sounds, is a lightweight
SQL database technology that can run locally without the
need for a separate remote server. The purpose and use of
Core Data is somewhat unclear, but it appears to be tied to
more business- and standard-views-based apps. Lastly, the
nominal XML support offered by iOS is little more than a
sequential file reader.

Unfortunately, tree-based or “DOM-style” XML file
reading is not available natively on iOS, so third-party
packages must be employed to accomplish the task. For the
requirements of the game, GDataXML turned out to be the
best such package.

The guide makes several parting observations and
suggestions worthy of note. First of all, the size of the screen
is very limited, so one must be sure to make all UI elements
large enough to be visible and accurately invoked, and one
must be sure to break up all complex interfaces into parts or
sections.

Another factor to be aware of is orientation changes.
Many iOS apps adapt to the orientation of the device as
horizontal or vertical. However, this type of change is less
common in games.

The device’s limited memory must also be borne in
mind—particularly for high-intensity games.

Finally, it is critical to regularly test an app on the device
because the simulator is merely an approximation to the real
thing and does not behave in precisely the same way.

2) iOS App Programming Guide: This resource ([13]),
contrary to its name, is not absolutely essential to the
construction of a functioning iOS application. Its contents
apply largely to business-oriented application and to fine-
tuning methods that only become relevant later in the
development cycle. Its discussion of app resources (such as
icons and launch images) is primarily of concern for release
on the iTunes store. And its detailed prescription for
defining app state transitions (such as how an app behaves
when it is forced to move into the background, like when a
call comes in) is necessary only when the app is closer to
release.

3) iTunes U Stanford iOS Class: As has already been
discussed, the first four classes of this resource ([11])

provides the best guided practice in using Xcode for iOS
programming. While the other resources provide a great
background, this is what actually gets someone ready to
program with the platform and IDE.

V. REQUIREMENTS

In light of the above sources, a number of specific

requirements were established for the game.

A. Voice-based Considerations

 The centrality of the vocal component of this project gives
rise to a number of very specific requirements in this
category.

1) Is there a reason for using voice control is used over
other forms of input? Touch is the primary form of input on
iOS devices, so traditionally touch-based commands (such
as left, right, up, down) should not arbitrarily be replaced
with voice commands. Employment of natural language in a
way not easily done with touch would meet this requirement.
Examples include commanding a character or the device and
conversing or communicating with a pet or personality.

2) Are structures spoken as much as possible? To
encourage maximum practice, the game ought to ensure
homework exercise vocal structures are spoken as much as
possible. A variety of words using the same structure should
probably be used to keep the child’s attention.

4) Does the system cause vocal fatigue? Though
maximum practice is desired, the system should not demand
so much talking from the children that their vocal cords
begin to hurt.

3) Does the system recognize compensatory structure and
promote correct ones? The system’s chief objective is to
promote correct speech, but it is obvious that the children
will have trouble doing so. Thus, the system ought to
recognize when they are having prolonged difficulty and
help them self-correct while still maintaining morale.

There are two known methods for providing self-
correction assistance when necessary. First, a diagram of the
physical form producing a correct pronunciation could be
displayed, though it might not be well understood by those
younger than 4. Second, the therapist could record the child
in the therapy session saying the structure correctly, and this
recording could be played back to the child. Since language
development is a primarily imitation-based exercise, the
latter is the more promising.

Another concern in this area is how to treat partial
correctness—when the child’s pronunciation is somewhere
between the compensatory structure and the correct one.
Four options are known. First, the requested task could be
performed partially, providing some form of positive
reinforcement. Second, the requested task could somehow
backfire, providing negative reinforcement (which is likely
not desirable). Third, the game could simply do nothing,
enabling the child to try again. And finally, something that
could be incorporated with any of the other three, the game
could offer some form of feedback about how close they

were to the right form (i.e. through colors, varied levels of
verbal affirmation, etc.).

4) Does the game make use of Cleft Lip Foundation
recommendations for getting the children to improve? These
recommendations are quite simple. The game should speak
to them, demonstrating the correct form for them to imitate.
And it should encourage them to speak their best.

B. Child Development Considerations

Because this system is designed for children at such early
stages in their development, it is impossible to safely ignore
the differences with them that might not be so obvious.

1) Is the problem presentation understandable?
Challenges in the game must be presented in such a way that
the children can understand them. If they don’t understand
them, they certainly won’t be able to solve them. In [4], it
seemed that problems that adhered to physical laws and
goals were typically better understood, but the introduction
of abstract rules causes confusion.

2) Is the problem salient? Too much information on
screen creates a distraction from what’s actually important
and needs to be solved, and children in this age range are
particularly susceptible to such distraction. Nintendo games
(such as Mario or Pokémon) might provide a good idea of
what kind of information density is appropriate on smaller
screens.

3) Does the problem have too many steps? Children 18
months of age can remove a single obstacle to a physical
goal (such as the cookie jar), and 6-year-olds can solve up to
6-step problems in their heads in a Towers of Hanoi game
(see [4]). The target children ought to be bounded by these
two extremes.

4) Is the full age range addressed? A substantial amount
of developmental progress occurs from 2 to 5. Therefore, it
is imperative that the game design grow with the child in
order to keep his/her attention.

C. Making It Fun

1) Do kids want to play it? One of the main objectives of
the project is to make home therapy exercises less tedious
and tiresome by making them fun. Though children find a
wide variety of thing interesting, they can also become bored
rather quickly—especially by redundancy. In this game,
motivational fun is absolute imperative.

2) Is it big, colorful, loud, and animated? Children are
captivated by movement and comprehensive and intense
sensory appeal. Thus, appealing to these likes will increase
the fun factor.

3) Does the voice processing delay or error negatively
affect game play? This requirement is double. First, because
there is a 2 second delay between when the speaker finishes
speaking and when the system can respond, time-critical
challenges should be avoided. Second, if the system
consistently misunderstands and misprocesses a child’s
command, the child will be almost guaranteed to get
frustrated. Thus, ensuring processing fidelity should be a
high priority.

4) Does it have replay value? Because these kids will be
playing the same exercise multiple time a week, and this
same overall game for as long as a their therapy takes
(weeks, months, or even years), the game must be specially
designed to hold their attention for the full period.

D. Technical Considerations

1) Does the system allow for minimal level setup? A
limitation of staff and funding dictates that level setup not be
made too complex. The roles of designer, writer,
programmer, artist, and tester are difficult to accomplish
within the limitations. Thus, a happy balance must be struck
between simplicity of setup and prolonged attention-holding.
Arcade games provide a nice means to this kind of objective.

2) Does it respect screen size? As has already been noted,
screen space is very limited. Specifically, the iPhone 4S has
a 3.5” screen, and the iPad has a 9.7” screen. In that kind of
visual environment, it is imperative that text, images, and
other UI elements be large enough to be decipherable. Yet
again, Nintendo provides for a nice comparison with its
Gameboy and DS series of gaming systems.

VI. INSPIRATION

In an effort to create a game that was fun for kids and
made legitimate use of voice, it was useful to survey and
profile some of the most popular games in both categories.

A. Voice-controlled Games

[24] provides a list of some of the most famous and/or
popular voice controlled games, though it should be noted
that other games have been included above and beyond this
list.

1) Seaman: In this game, the player speaks to a pet, which
is a strange species of fish. This “Seaman” is not always
responsive, and the player often has to work persistently to
get his attention. His responses change from innocent while
he is young to rude and sarcastic as he gets older.

2) Lifeline: Here, the player is trapped and has no option
but to guide a remote robot named Rio to get rid the
monsters in a hotel and free him. All commands must be
verbal.

This provides possible inspiration for the current game.
The children could be required to verbally guide on-screen
characters to accomplish certain tasks.

Also of note is how Rio reacts when she doesn’t
understand the player. She may shrug, do something
completely unwanted, or simply do absolutely nothing.
According to reviews, this behavior can be very frustrating
when the listening system doesn’t work well.

3) Hey You, Pikachu!: This Nintendo 64 game is similar to
Seaman in that the player gets to raise his/her own pet: in
this case, a wild Pikachu. Activities include a wealth of
minigames, fishing, and purchasing items for the Pikachu.

There are several notable design features in this game.
First of all, to make the speech processing delay more
acceptable, the game encapsulates every utterance in a

bubble and physically transmits it across the stage to
Pikachu. This feature makes the delay more tolerable by
giving it an apparent real reason for occurring—a feature
that could be adapted for the current game.

In addition, the game uses icons in response to each
utterance to indicate either understanding or the lack thereof.
This is a form of guaranteed feedback not seen in the other
games. While it does not guarantee the utterance will be
properly processed, it consistently provides a base level of
feedback indicating whether the utterance was even
received.

4) Odama: In this game, the player issues vocal
commands to battalions of troops to protect him or herself
while simultaneously pushing a large ball across the field.
Though this idea of simultaneously employing multiple
modes of input to accomplish more is intriguing for the
adult, it is unlikely that children could handle so many things
at one time.

5) Pah!: This game is as simple with voice control as it
gets. Essentially, the only command is “pah,” and the system
responds differently depending on the length of the
utterance. The game itself is a side-scrolling space-like
shoot-em-up, and long utterances are used to lift the ship
while short utterances are used to shoot projectiles.

Though this simple mechanic definitely effects the
repeated use of a particular syllable seemingly infinite times,
it has a tendency to induce vocal fatigue after a while.
Further, it has a time-critical component, which makes it
unusable for the current project.

However, one of this game’s great positives is its cross-
cultural appeal. Whereas many vocal games are bound by
linguistic barriers, this game was able to jump across
countries without any modification rather quickly (see [25]).

B. iOS Children’s Games

A number of lists around the internet provided
recommendations of iOS games for kids at different ends of
the required age range. Some of the most popular mechanics
among these games were physics-based games (such as
Angry Birds, Cut the Rope, Fruit Ninja, Paper Toss 2,
Bubble Popper, and Rat on a Skateboard), puzzle games,
matching games (such as AniMatch and Giraffe’s Matching
Zoo), and creative games (such as Toca hair salon, Cake
Doodle, and Drawing Pad).1

C. Overanalysis Paralysis

After gathering much the above information, the junior
researcher, who was in charge of choosing a game direction,
was uncertain how to proceed. The requirements were
almost too extensive to satisfy, and the possibilities for
design choice were practically infinite.

The main issue was an attempt to use a deterministically
narrowing strategy to identify the right direction when the

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 Note that all games used in this analysis are downloaded and installed on
ones of the UCSC ATLab iPod Touches for study by future researchers in
that lab.	

correct strategy at this point was to freely brainstorm. That
is, to create.

Still stuck, the senior researchers eventually stepped in
and decided to pursue an interactive storybook mechanic,
using Scribblenauts as a chief point of reference. The
Wheels on the Bus game might also provide a good point for
comparison.

D. The Dora the Explorer Breakthrough

Continued brainstorming eventually led to the realization
that a wildly successful model of the interactive storybook
had already been implemented: Dora the Explorer. In this
show, the story and animation capture the children viewers’
attention, and it is periodically interrupted by opportunities
for the viewers themselves to verbally participate in the
show.

There are at least two different ways in which viewers can
engage in these instances. First, they may identify the right
direction, location, or object in response to Dora’s questions.
Secondly, when the villain fox Swiper attempts to steal
something, Dora and the child must say, “Swiper, no
swiping!” three times before he gets away in order to stop
him. These two options provide potential models for the
game, but the latter is particularly noteworthy. Because it
gets kids to repeat the key phrase, it demonstrates a way in
which homework exercise repetition might also be
incorporated.

	
Figure 1. Map demonstrating the diverse locations Dora can visit in a

single episode. [26]

There are other features in Dora the Explorer that are
worth preserving in the researchers’ game. First is story
flexibility. Because of her age (7—older than most viewers),
Dora is able to adventure anywhere from her neighbor’s
house to the Russian tundra. This kind of flexibility has
allowed for the adventure diversity necessary for keeping
children’s attention for years on end—the same thing this
game will have to do. Second, each episode has a specific
goal to achieve, allowing for a sense of individual purpose
and involvement every time. Third, Dora is always
accompanied by her monkey companion Boots, who
provides a greater sense of community. There is something
warming about knowing that the character on the screen isn’t

completely alone without the player. Finally, a map is
included to describe the plan of almost every episode.
Though not critical for the vocal objective of the game, it
could provide training and/or practice in map reading for the
older children who are just beginning to understand it.

See [9] for more details on the design of Dora the
Explorer. In particular, Larsen’s detailed discussion of the
process of creating an individual episode from start to finish
could serve as a decent analogue for the current game.

VII. DESIGN PHASE

 After gathering all the requirements, background
information, and inspiration material—and with a general
direction decided—it was time to begin actual design.
Everything from mechanics to storyline were discussed, as
detailed below.

A. Initial Storyboarding

 Figure 2 and Figure 3 make up the initial storyboard of the
game. The first contains a bridge covered with balloons, and
the player must say “pop a balloon” 3 times in order to
succeed in the stage. This phrase specifically works on
“plosives”—the p’s and b in this case. After the third balloon
is popped, fireworks are displayed as a form of positive
reinforcement, celebrating their success in successfully
completing the stage.

	
Figure 2. First rough storyboard frame.

	
Figure 3. Second rough storyboard frame.

	 The second of these frames was far less fleshed out, but
several words and phrases that were considered as
completion commands included “red tie” and “open the
door.”

B. Responding to Requirements

Though a number of design decisions were made
regarding how to meet the requirements, among the most
important was a new support system to assist the children
whenever they had trouble with a particular vocal structure.
The system keeps count of how many times a particular
word, phrase, or syllable (the particulars among these were
not made clear) is mispronounced. After the third
mispronunciation, the assistive diagram and audio sample of
the child correctly saying the syllable are deployed. After
three more time, if the child is still unable to properly
produce the sound, the system automatically completes the
task for him/her. One additional feature for this system that
was not discussed involved keeping a record of the
structures that prove particularly problematic (as determined
by reaching the auto-completion mark) for review by the
therapist in weekly sessions.

Another notable feature that was discussed was voice
filtering. Because the children will likely perform the
exercises with the assistance of their parents—and because
their parents will probably demonstrate the proper
pronunciation for them—it is important that only utterances
from the child are processed as commands. A test of
fundamental frequency was suggested as a way to exclude
the naturally lower-range parental voices.

Another moderately important feature discussed was the
termination of OpenEars listening after a certain length of
time (e.g. 5 seconds). The logic was that if the child had not
gotten the proper pronunciation after that period, s/he was
not going to get it on that try. Thus, it is bad design to let
OpenEars keep recording when the child may be making
multiple separate utterance attempt.

C. Detailing the Story

Assisted by Katie A. Prior, junior researcher John
Chambers brainstormed the overarching story belying the
game.

The main character, Sam, is pictured in Figure 4. His age
has not yet been set in stone, but he is at least old enough to
be in elementary school.

The story successfully ties in the first two scenes, and it
keeps a significant degree of the flexibility afforded by Dora
the Explorer. By employing a particular plot device, this
story enables use of such settings as a regular home and
school, the Egyptian pyramids, Arthurian castles, Caribbean
pirates, the Incan ruins, the Taj Mahal, the Canadian tundra,
the Amazonian jungle, and even space!

D. An Excerpt

Getting into the meat of the story, for some reason, Sam’s
family has always been very close with the wizard Merlin—

the very same Merlin from the Legend of King Author. In
fact, he and Sam are known to have a relationship as close as
any grandfather and grandson. On his way home from
school, Sam regularly takes the long way home (see Figure 5)
through the woods so he can spend some time with Merlin
before finally going home for the evening.

On the day the player happens to meet Sam, he finds that
the bridge he normally crosses on the way to Merlin’s house
is crowded out by balloons (Figure 2), and he needs the
assistance of his newfound player friend to help him bellow
the balloons into popping. (Note that the decision has not yet
been made whether Sam will be aware of the player or not.
First instinct suggests that having him aware would engage
the players more. However, it would be helpful, if that route
is chosen, to come up with a good way for Sam to realize the
player is there.)

After crossing the bridge, knowing full well that those
balloons were not supposed to be there, Sam realizes there is
something unusual going on in this highland forest of
redwoods. He makes his way on to the loving, but ever so
kooky, Merlin’s house filled with curiosity as to what is
going on.

Merlin quickly informs him that he placed the balloons
there as a harbinger of celebration. He has a present for
Sam—a magical medallion which will carry him on
adventures untold. But he doesn’t tell Sam about its
capabilities, instead charging him to always keep it with him
no matter what. Sam, with great trust and respect for his
elder friend, promises to do no less, though his curiosity
can’t help but fester. He finally makes his way home for the
night after failing at every attempt to get Merlin to let secret
out. And his eyes resist any semblance of sleep as he
wonders like a child on Christmas Eve.

The next day, Sam rides the bus to school like any other
day, but this day is special. It’s one of those days that every
student, no matter how old, inevitably looks forward to: a
field trip day! Today’s visit just happens to be to the
Museum of World History, and Sam is raring to go.

On arrival, in an unusual decision, Sam’s teacher tells him
and his class that they can freely explore the museum to their
delight. No lines. No groups. Just complete freedom!

	
Figure 4. Sam, the main character.

Fascinated by every exhibit, Sam can’t help but want to
spend a day at them all. But he settles, after much internal
deliberation, on exploring the section on Medieval Times,
feudalism, castles, jesters and ladies, and King Arthur and
his Round-table Knights. After all, that was the time that
Merlin was always telling him stories about.

But as he enters the vast room filled with seemingly
innumerable relics of the Middle Ages, he notices a very
strange phenomenon occurring: a fading, a rising… It’s the
same room—with the same still artifacts. But not a one of
his friends is there. Not his teacher. Not the museum staff.

Just as the gulp is reaching the top of his neck from
uneasiness, he is suddenly jerked out of his tension—or
maybe pleasantly distracted—by the new change that occurs.
The relics, not budging out of place, seem almost to polish
themselves—to reinvigorate—to be made new. Shining
swords, armor, and jewels dazzle his eyes. And just as he
completes his survey of the room, another but unexpected
glint catches his eye… out of his pocket. That old medallion
isn’t so old anymore. In fact, it’s so bright it’s lighting the
room.

Finally mustering the courage to see what might be going
on outside, Sam timidly creeks the room’s vaulted door
open. But what he finds is not a museum… but a castle! And
so begins his journey—and his realization.

This medallion could make him travel. But it wasn’t like
any old airplane. Given any simple relic from a place and
time, he could go there. And, to be sure, this museum had
quite the collection of relics.

	
Figure 5. The story in a nutshell.

VIII. PROTOTYPING

The above perspective, requirements, design direction, and

story framework led to a series of efforts that become the
partly finished end product. Because of the pressure of time,
no lo-fi prototyping phase was employed.

A. Graphical Resources

For lack of an artist for hire, it was necessary to create the

graphical resources independently. The free vector graphics
package Inkscape—an alternative to Adobe Illustrator—
served as the generation platform. Figure 6 and Figure 7 are
examples of the use of this program.

It should be noted that vector graphics programs are
preferable not only for their objectification of paths, but also
for their scalability (especially by comparison with raster-
based programs and formats).

	
Figure 6. First storyboard frame brought to fruition.

	
Figure 7. Second storyboard frame partly implemented.

B. iOS Game Engine Selection

From the perspective of the junior researcher, if a game
engine can be found that satisfies the majority of the
system’s needs, it ought to be used to avoid reinventing the
wheel.

Two of the most promising game engines in the iOS world
at the time of writing included Cocos2D and Sparrow.
According to reviews, the latter is easier to use, but the
former allows for more control and is a more mature and,

thus, better documented platform. Further, the games that
were currently on the market that made use of it looked very
professional. Therefore, Cocos2D was selected as the core
engine.

Unfortunately, because of design modification (in external
level and behavior description, specifically) made later on,
Cocos2D proved to be an insufficient platform.

C. Event-driven or Play-n-Prompt Model

Capitalizing on the Dora the Explorer model, the typical

interactive storybook can be divided into two types of states.
First is the playback state in which a portion of the story is
being automatically played back, supported by pre-recorded
narration. Second is the prompt state during which the
player has been prompted with a challenge, and the system is
awaiting a response. It is during this state that the above-
described support system is employed.

This model allows all activity to be described sequentially
and in temporal increments. In the context of Cocos2D, this
saves the programmer from having to focus on frame-by-
frame control in a Δt loop. The only top level changes that
ever need be handled are executing a certain playback piece
and waiting for or processing a vocal prompt.

Unfortunately, this approach can limit the implementation
of animations and other activities that span these states.
Thus, its implementation has a limit on usefulness, and must,
at the very least, be supplemented by other engine features.

D. XML Stage Loader and Data Model

The stage depicted in Figure 6 was fully implemented in
code a few weeks before project’s end. Subsequently
generalizing level description for XML thus proved quite the
challenge. A number of skillful data modeling choices were
necessary to make the system work.

First of all, all graphics were assigned to layers. These
layers are exactly comparable to layers in any graphic design
program in which higher layers mask lower ones. The three
conventional layers included the base stage, the activity
layer, and the foreground. All movement takes place on the
activity layer. The other two are reserved for stationary
objects.

This leads to the two types of objects in the system. The
first type is scenery, which serves the exact purpose it
appears to. A scenery item has an associated stationary
image (i.e. not sprite sheet), and it is assigned to a layer at a
specified position. Over the course of the execution of a
level or “stage,” it never moves or disappears. It does not
change.

The other type of object is the actor. An actor is much
more complex, but, in general, it is any object that either
moves or changes appearance. An actor can be assigned
either a single image or a sprite sheet as its image source.
Further, each still frame in the sprite sheet is named—
usually according to the emotion it portrays. Multiple frame
sets that are used for animation are also assigned a name for
reference, along with parameters describing the frame delay,
total number of frames, and optional sound associated with

the animation—since, after all, animations would typically
reflect actions that might produce sound. In fact, in the data
model, these effects are called as “actions.”

During the execution of the stage, actors’ positions can be
changed, and they can either be animated or set to display a
different persistent still frame by referencing the names
associated with either of these features. Thus, for example,
the actor “Sam” could be set to move to a certain location
using the animation “walkLeft.”

A special type of actor was introduced to handle the
balloons: actor collections. Like a class of objects, these
actors are described once, but multiple instances of them can
be placed on the stage. Further, there sometimes situations in
which members of the collection must be referenced in
sequence or all together. The balloons are a fine example
because, when the “pop” action is performed, the system
must iterate through the collection to find a balloon that is
not yet popped.

This last example provides a nice transition into the idea
of a cue. Drawn from the world of the theater—and
specifically a stage manager—in theater show, every single
occurrence from the dimming of the house lights at the
beginning of the production to the countless position
changes of the actors are documented as a cue. Position
changes for actors are known are “blocking.” And there are
other cues for sound, light, and virtually everything else that
goes on during the production.

In a word, the production can be fully described as a
summation of sequential and sometimes simultaneous
cues—with sound, movement or otherwise. This is exactly
the metaphor used to describe the stages. Every bit of
activity is described using these cues, except that, unlike in
theater, the show is effectively “paused” at various locations
to allow for the necessary player or user vocal input. Once
the input has been received, the show picks up right where it
left off.

Getting into the data model side, there are three types of
queues. First is the simple single queue in which an actor or
member of an actor collection can move, play a sound,
modify its still frame, or play an animation over a specified
period. Movements can be either Bezier curves or straight
lines, reflecting the movement options in Cocos2D. Further,
destination points in movements can be specified in either
absolute coordinates (relative to the stage origin) or relative
coordinates (relative to the actor).

Unfortunately, because of restrictions in Cocos2D’s
design, single cues cannot be created without being
associated with an actor—a flaw that led to the failure of the
particular implementation, but not of the data model.

The other two cue types are sequences and simultaneous
cues. As their names imply, these are simply combinations
of other cue types. Usually, sections of a stage script will
have an overall sequence cue linking all of its component
cues together. But within that sequence, there may be
simultaneous cue collections, such as two actors moving at
once.

Unfortunately, this abstraction of cues reflects the same
problem of the event-driven game programming model: no
cues can easily cross boundaries. Therefore, a better model

would be to specify individual cues to occur a certain
amount of time from a universal reference time. In this way,
the discrete boundary is eliminated.

Moving forward, next is the description of the level’s
voice-to-text system. Its components are the OpenEars
vocabulary files and the definition of the commands it
contains. The vocabulary files include a dictionary file and a
language model file. The commands are essentially a
complex connection between a text (converted from voice)
command and a cue-based result. Its extra parameters
include a specification of the sound file to be used by the
support system if necessary as well as a correctness
threshold.

This latter parameter is of particular importance and
brings up one of the issues with using a more dynamic
language backend. Different words and phrases have
different correctness ratings that can be considered correct.
For example, while “left” will usually return 0 (i.e. perfect)
when said correctly, “shoot a balloon” won’t return a value
over -500 (i.e. less than perfect). The implication is that
correctness thresholds may have to be set for each and every
complete phrase; and, what’s worse, correctness ratings may
not be universal across different speakers, though this is a
subject for empirical testing.

Returning to command description, a special type of cue
was introduced to accommodate its needs: the actor
multiplicity type of plural one at a time. This cue parameter
was necessary, again, to accommodate the balloon situation.
Whenever the “pop a balloon” command is issued, the
system triggers the plural-one-at-a-time cue associated with
it. The way the system handles this cue type is it seeks out
all members of a plural actor class, seeks through these
members until it finds one on which its assigned action has
not yet been performed. When it finds such a member, it
performs the assigned action on it.

The way memory of action performance is maintained is
through the use of state assignments associated with actions.
For example, when the “pop” action is performed on one the
“balloon” objects, that balloon object is assigned the state
“popped.” Thus, the next time the command is called, the
system will recognize that the state effect the action has has
already been effected, and it will not effect it again.

The next to last component of the data model is the reward
condition specification. This is the condition checked after
the performance of any command to see if the requirements
for stage completion have been met. It is defined using actor
states; that is, while checking the reward condition, the
system checks all specified actors against their associated
specified required states.

The final component of the data model is the specification
of initial locations for all actors. It is in this section that
plural actor instances are assigned their respective locations.
It should be noted that support has not been implemented for
plural actors with a sprite sheet image source; only single
frame plural actors are allowed.

IX. TESTING

The junior researcher’s objective was to execute an
observational case study at the UCSC Child Care Center by
summer’s end to evaluate normal kids’ level of interest in
the game. Unfortunately, there was not enough time to get
the study off the ground; and, besides, the game never quite
made it to the point of being worth executing a study with
real kids. However, two very good things products came out
of the efforts to establish the study.

A. IRB Protocol, Consent and Assent Forms

An annotated copy of the UCSC IRB Protocol guidelines

([23]) has been left in the ATLab for assistance in creating
later studies. In general, studies with children in this
category of research can be evaluated on an expedited basis,
needing only the approval of the IRB Chair. Unfortunately,
because these studies involve children, they cannot be
entirely exempt from review.

In general, there are a few fundamental guidelines for the
construction of protocols, consent, and assent forms (or
assent methods). First and foremost, voluntary and informed
consent must be elicited from the parent(s) before any
attempt to obtain voluntary assent from the child may be
made. Second, performance of the study is strictly dependent
on continued consent. If consent or assent is withdrawn at
any point during the study, all employment and observation
of the subject must stop. If conditions surrounding the study
change at any point, the subject must be informed so that
he/she may evaluate his/her continued participation. Finally,
all private information, such as medical information, must be
kept securely so. However, immediate destruction of
gathered data is not encouraged because such data may
become useful later on. Protection of such data is the
primary concern.

Finally for the project’s specific protocol2, the junior
researcher included specific procedures for the care of those
vulnerable to seizures. Because some games have been
thought to induce seizures, those with a history of epilepsy
are screened from the study. Secondly, the protocol requires
that the researcher familiarize him or herself with the
symptoms and treatment of seizures such that, in the event
the game under considerations ends up provoking seizure
symptoms, all gameplay will immediately cease and desist;
emergency personnel will be notified; and known first aid
will be applied.

B. Notes from the UCSC Child Care Center Director

Contact was made with the director of the UCSC daycare

for the purpose of conducting the study. Among the
recommendations offered, some of the most important were
those affecting time.

In general, such studies are typically planned at least 6
months in advance. This early planning is critical for a
number of reasons. First, it allows the daycare to adapt its
curriculum to the study’s needs. Further on that point, it
allows the teachers to be and feel more involved in the
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2	 UCSC IRB Protocol #1907, approved for 3 years from 8/28/2012.

process instead of having the study’s procedures forced on
them; and the more they feel a part of it, the more they’ll
support it.

Second, such extensive advance time allows the parents to
consider and return the study forms, which can often take
quite a while. Unfortunately, it is commonly the case that
these forms must be actively chased down. However,
because the parents are in an academic setting, they are
typically better predispositioned towards allowing their
children to be involved in such studies.

Third, the time allows for a better study environment.
More specifically, under the laws of the State of California,
unless an individual has undergone the rigorous background
check associated with child care (which takes about 3
months to go through), that individual must be accompanied
by a chaperone approved daycare staff member for the
duration of the study. This is both a burden on the study
conditions and a financial burden on the daycare center, as
they must pay for an extra teacher to chaperone during the
study. The director expressed a willingness to support the
study with no cost to the researchers; however, earlier
planning can prevent this inconvenience.

Finally, it is helpful to spend approximately 3 days getting
to know the kids and allowing them to get used to the
researchers before actually performing the study. This
allows for better flow during observation, and it prevents the
lack of familiarity from distorting observations.

X. RETROSPECTIVE EVALUATION

A number of lessons have been learned in review the

process above described.
First of all, it took far too long to move from requirements

generation to prototyping. Again, the main roadblock was an
unintentional insistence on using a deterministic approach to
design, and this insistence took a large chunk out of the time
that should have been used for development.

Second, involvement with and incorporation of the
“command-and-control” speech therapy method was far too
undeveloped—particularly with the central focus of the
project being on assisting and enhancing this process. The
main roadblock to that component of the project was
difficulty locating relevant literature; relevant databases
were difficult to identify, and keyword searches in the
databases available did not provide any promising content.
In general, for researchers so unfamiliar with the field, it
would have been helpful to have greater assistance in
locating relevant resources.

Third, too much time was spent exploring iOS
instructional materials. Though it was difficult to know
without first exploring them, many of the resources were
barely relevant to the project—at least for this stage of it. In
the future, the above-included survey of iOS technologies is
recommended for the guidance of those unfamiliar with the
platform.

Finally, if there is to be any hope of actually performing a
study, the study must be prepared and initiated well in
advance of the program. However, being forced to write a

study from scratch was likely as educational for the junior
researcher as actually participating in one.

XI. FUTURE WORK

Clearly, in review of the requirements, much work

remains to be done. In particular, a greater exploration of the
cleft lip speech therapy process and collaborative (with
therapists and parents) generation of a promising revised
therapy method would be beneficial. Further, a greater
examination needs be done into what kinds of problems
children are capable of solving at various ages, as well as
into what kinds of game mechanics are preferred in each age
group. Finally, the game ought to be adapted for languages
other than English and, possibly, for cultures beyond the
West.

Moving out of the overarching requirements and on to the
more meticulous implementation level, a number of
substantial problems need to be remedied.

First of all, as has already been mentioned, the nature of
OpenEars correct ratings needs to be more deeply described.
Specifically, the researchers need to test if there is a
generalizable rule governing the expected correctness rating
across different words, syllables, and phrases of particular
lengths. Such a rule would eliminate the need to establish an
individual correctness rating for every single phrase or
recognizable utterance in the system.

The researchers must also test the variation of correctness
ratings of the same phrase among different people. If there is
indeed variation among different individuals, an exploration
must be should into how the system might be calibrated for
different voices. For example, certain parameters of the
voice may give rise to a mathematical relationship between
the correctness ratings for one voice and those of another.
Different accents should also be considered.

Next, a method must be devised for the elimination of
erroneous responses. Specifically, when words or phrases
not included in the current vocabulary are processed, the
system will often return false positives. These may be able to
be eliminated by checking correctness ratings; but, as has
already been made clear, those have their own problems.

Finally, a system ought to be developed for the confident
detection of absolute mispronunciations, as well as for
mispronunciations that are somewhere along the spectrum
between the known compensatory structure and the known
correct pronunciation. One possible way is to retrieve the top
n guesses for a particular utterance, search for the
appearance of both the compensatory and correct versions,
and compare the respective correctness values of each. Some
combination of screening using established exclusion values
(or baseline values) and generating a ratio between the
values ought to provide a believable placement of an
utterance actually spoken along the spectrum between
compensatory and correct.

ACKNOWLEDGMENTS

 John Chambers wishes to thank Katie A. Prior for her
invaluable help brainstorming the game storyline. He would

also like to thank Alexandra Hollaway for her help with
paper-writing strategies. Finally, he would like to thank the
participants, staff, and advisors of UCSC’s SURF-IT
summer program for providing the daily input, feedback,
and moral support necessary to the successful completion of
this kind of project.

REFERENCES

[1] Y. Rogers et al., INTERACTION DESIGN: beyond human-computer

interaction. Chichester, West Sussex, UK: John Wiley & Sons Ltd,
2011.

[2] M. Rettig. “Prototyping for tiny fingers,” in Magazine Communication
of the ACM, vol. 37, no. 4, pp. 21-27, Apr., 1994.

[3] R. V. Kail. Children and their Development. Upper Saddle River, NJ:
Pearson Education, Inc., 2010.

[4] D. Klahr and M. Robinson, “Formal Assessment of Problem-Solving
and Planning Processes in Preschool Children,” in Cognitive
Psychology, vol. 13, no. 1, pp. 113-148, Jan., 1981.

[5] UC Davis Cancer Center and UC Davis Children’s Hospital. (2012,
July). “Children learn through play” [Online]. Available:
http://www.ucdmc.ucdavis.edu/CANCER/pedresource/pedres_docs/Chi
ldrenLearnThruPlay.pdf

[6] “How Children Solve Problems,” Scholastic [Online]. Available:
http://www.scholastic.com/browse/subarticle.jsp?id=3434

[7] “Cleft Palate Speech Glossary,” Children’s Hospitals and Clinics of
Minnesota [Online]. Available:
http://www.childrensmn.org/Manuals/PFS/ChildDev/193474.pdf

[8] “Speech Development Related to Cleft Palate,” Children’s Hospitals
and Clinics of Minnessota [Online]. Available:
http://www.childrensmn.org/Manuals/PFS/ChildDev/193473.pdf

[9] B. K. Larsen. “Ultimate Guide to Dora the Explorer,” TLC Family
[Online]. Available: http://tlc.howstuffworks.com/family/how-dora-the-
explorer-works.htm

[10] Wikipedia contributors, “Video game genres,” Wikipedia, The Free
Encyclopedia [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Video_game_genres&oldid
=517793515

[11] P. Hegarty. (2011). iPad and iPhone Application Development
[Online]. Available: https://itunes.apple.com/itunes-u/ipad-iphone-
application-development/id473757255

[12] Apple Inc. (2012). iOS Technology Overview [Online]. Available:
http://developer.apple.com/library/ios/documentation/Miscellaneous/C
onceptual/iPhoneOSTechOverview/iPhoneOSTechOverview.pdf

[13] Apple Inc. (2012). iOS App Programming Guide [Online]. Available:
http://developer.apple.com/library/ios/documentation/iphone/conceptu
al/iphoneosprogrammingguide/iphoneappprogrammingguide.pdf

[14] Apple Inc. (2011). The Objective-C Programming Language [Online].
Available:
https://developer.apple.com/library/mac/documentation/Cocoa/Conce
ptual/ObjectiveC/ObjC.pdf

[15] Apple Inc. (2011). View Programming Guide for iOS [Online].
Available:
http://developer.apple.com/library/ios/documentation/WindowsViews/
Conceptual/ViewPG_iPhoneOS/ViewPG_iPhoneOS.pdf

[16] Apple Inc. (2012). Concurrency Programming Guide [Online].
Available:
http://developer.apple.com/library/mac/documentation/General/Conce
ptual/ConcurrencyProgrammingGuide/ConcurrencyProgrammingGuid
e.pdf

[17] (2012). “Welcome to OpenEars: free speech recognition and speech
synthesis for the iPhone,” Politepix [Online]. Available:
http://www.politepix.com/openears/

[18] R. Wenderlich. (2010, February 12). “How to Make a Simple iPhone
Game with Cocos2D Tutorial,” RayWenderlich [Online]. Available:
http://www.raywenderlich.com/352/how-to-make-a-simple-iphone-
game-with-cocos2d-tutorial

[19] R. Wenderlich. (2010, June 22). “How to Use Animations and Sprite
Sheets in Cocos2D,” RayWenderlich [Online]. Available:
http://www.raywenderlich.com/1271/how-to-use-animations-and-
sprite-sheets-in-cocos2d

[20] (2012, February 28). “cocos2d Basic Concepts,” cocos2d for iPhone
[Online]. Available: http://www.cocos2d-
iphone.org/wiki/doku.php/prog_guide:basic_concepts

[21] (2011, March 30). “Programming Guide,” cocos2d for iPhone
[Online]. Available: http://www.cocos2d-
iphone.org/wiki/doku.php/prog_guide:index

[22] R. Wenderlich. (2010, March 18). “How To Read and Write XML
Documents with GDataXML,” RayWenderlich [Online]. Available:
http://www.raywenderlich.com/725/how-to-read-and-write-xml-
documents-with-gdataxml

[23] University of California, Santa Cruz. (2007, May). Human Subject
Research Guidelines [Online]. Available:
http://officeofresearch.ucsc.edu/orca/irb/irb-forms/misc-
forms/guidelines.pdf

[24] Leon the Hart. (2012, February 22). “The Top 5 Voice-controlled
Games,” HardcoreGamer [Online]. Available:
http://www.hardcoregamer.com/2012/02/22/the-top-5-voice-
controlled-games/

[25] P. Sawers. (2011, November 12). “The story of ‘Pah!’, the voice-
controlled game that took the mobile world by storm,” TNW Magazine
[Online]. Available: http://thenextweb.com/apps/2011/11/12/the-
story-of-pah-the-voice-controlled-game-that-took-the-mobile-world-
by-storm/

[26] “Dora the Explorer: Lost City Adventure,” MobyGames [Online].
Available: http://www.mobygames.com/game/windows/dora-the-
explorer-lost-city-adventure/screenshots/gameShotId,257510/

