Hierarchical Disk Driven Scheduling for Mixed Workloads
Gwendolyn Einfeld
gwen@soe.ucsc.edu

Computer Science Department
University of California, Santa Cruz
Santa Cruz, CA 95064

Abstract

Disk schedulers are responsible for determining when processes are allowed to access the hard disk. They must balance multiple users and processes, servicing as many disk requests as possible without overloading the disk. Multimedia processes with hard service deadlines introduce further constraints. This paper proposes modifications to the Hierarchical Disk Sharing (HDS) algorithm [1] to facilitate fair borrowing and token recycling. Hierarchical Disk Driven Scheduling (HDDS) adapts itself to the speed of the disk, providing processes with up to date service guarantees.
1 Introduction

In most computer systems, hard disks must balance simultaneous requests from multiple users and processes. These requests may have hard deadlines – as with multimedia, or may be “best-effort” processes that can be postponed for short periods of time while other deadline-constrained requests are serviced.

Disk schedulers must be able to provide processes with some guarantee of service. Trying to schedule too many disk accesses in a given time period will result in overloading and diminished performance. To avoid defaulting on guarantees, the scheduler must be conservative in scheduling requests, at the cost of utilizing all available disk time.

Additionally, schedulers must have a method for preventing one process from monopolizing disk time at the expense of others. If a process is not using disk time, that time should be shared among those that are using it, but the process should be able to pick up at any time without delay due to its temporary inactivity.

One approach to scheduling disk access time uses token bucket filters. Each process or group of processes receives tokens which can be exchanged for disk time. The tokens provide a guarantee of service – if a process has a token it is guaranteed disk time regardless of the requests of other processes. This paper describes Hierarchical Disk Driven Scheduling (HDDS). HDDS is based on Hierarchical Disk Sharing (HDS) but addresses issues of token supply, the rate at which tokens are distributed, and “fair” borrowing. HDS uses a hierarchy of token bucket filters to distribute tokens to processes (nodes). In HDDS, tokens are recycled through the hierarchy rather than awarded based on a pre-set rate. This means that the rate is determined directly by the disk, preventing both overloading and unused disk space. If the disk is operating faster than usual, tokens will be returned to the hierarchy faster. Likewise, if the disk is operating more slowly, tokens will not be returned as quickly and the scheduler will be unable to schedule more requests than the disk can handle. This is a shift from a scheduler-driven rate to a disk-driven rate.

The token borrowing process is also modified so that processes keep track of tokens borrowed and must eventually repay the debt. Processes are also unable to amass unlimited tokens, increasing the movement of tokens. HDDS borrowing penalizes the borrowing node rather than the parent or sibling node. Because nodes track their borrowing, the disk is prevented from overloading itself.
2 Related Work

Disk access in computing systems is managed by real-time disk schedulers. A combination of request deadline and disk seek time generally determines the order of requests

[image: image1]
Figure 1: HDS distribution of tokens according to global rate.
being sent to the hard disk. However, such scheduling algorithms often fail to meet the needs of both real-time and best-effort processes.

Hierarchical Disk Sharing (HDS) is an algorithm designed to handle mixed workloads (hard and soft real-time, and best-effort processes). The algorithm uses a hierarchy of token bucket filters to distribute available disk time between processes. As in conventional token bucket filters, nodes must exchange a token for each request they wish to send to the disk. Nodes may represent users, processes, or a group of users or processes. Each node reserves a percentage of the tokens allotted to its parent node. The rate of tokens entering each node depends both on this reservation and a global token rate, as shown in Figure 1. When a request is sent to the disk, a token is removed from the related child node, as well as each parent above the child node up to the root.

HDS also contains a mechanism for borrowing tokens. If a node does not have any tokens it can pass the request to its parent. If the node’s sibling(s) are not using all of their tokens, the parent may have excess tokens and be able to service the request.

While HDS addresses the needs of mixed workloads by assigning them different places and reservations in the hierarchy, it fails to efficiently utilize all available disk space. The static global rate prevents the algorithm from responding to changes in disk speed. To prevent overloading, the global rate must include an error margin and hence must be set conservatively. This leads to situations where the disk may be idle and nodes may have outstanding requests, but there are no tokens available. At the same time, reducing the error margin increases the likelihood of overloading the disk.

A second drawback to HDS is found in the borrowing system. Since nodes can pass their requests on to parents, they are never penalized for borrowing tokens, and there is no paradigm in place for repayment. Borrowing is unlimited. Additionally, because tokens are passed to the parent, the situation can occur where more tokens are being used than stipulated by the global rate. Consider the tree described in Figure 2, with a global rate of 1 token/sec. If ‘B’ receives a request but lacks tokens to service it, it passes the request to its parent. The parent then uses a token and services the request. ‘C’ can then service a request since it still has a token in its bucket. Although the token rate specifies one token per second, two have been used.

Hierarchical Disk Driven Scheduling (HDDS) uses the hierarchical framework developed by HDS, but modifies it to address the problems described above. In HDDS, tokens are recycled rather than distributed according to a global rate. The result is that the disk controls the rate at which tokens enter the hierarchy. HDDS also limits borrowing by allowing nodes to accrue short-term “debt”. The debt must be repaid if other nodes are using tokens, but is forgiven if other nodes are idle for extended periods of time.
3 Solution

Hierarchical Disk Sharing (HDS) relies on a global rate to disburse tokens among processes. The rate must be determined carefully to yield maximum efficiency without overloading the hard disk. The method proposed in this paper, Hierarchical Disk Driven Scheduling (HDDS), allows maximum efficiency without the danger of overloading.

Additionally, the institution of borrowing tokens is reformed to include a mechanism for repayment. This section describes the framework of HDS and the alterations made by HDDS to address the issues of borrowing and token disbursal.

[image: image2]
Figure 2: Relative and absolute reservations of child nodes.

3.1 Hierarchical Structure

Processes are arranged as nodes in a tree structure. Nodes may be grouped by type of process, user, etc. When a node is created it is given a reservation, or the amount of tokens it should receive. The reservation may be absolute or relative. Figure 2 shows a parent with three siblings. Node A has an absolute reservation of 50%. Node B has a relative reservation of 2 and node C has a relative reservation of 3. Consequently, node A will receive 50% of tokens given to its parent. Nodes B and C will receive tokens according to probabilities determined by:
(100 – (sum of absolute reservations of active siblings)) * (reservation)/(sum of relative reservations of active siblings)

Thus node B will receive:

(100 – 50) * (2 / (2+3)) = 20%
and Node C will receive:

(100 – 50) * (3 / (2+3)) = 30%
An active sibling is defined as a node whose bucket is not full or that has outstanding requests.

Allowing processes either relative or absolute reservations facilitates disk sharing between processes with different types of deadlines. A best-effort process may be given a relative reservation, while a multimedia process will be assigned an absolute reservation. As nodes are added and removed, the number of tokens awarded to processes with relative reservations will change, while absolute processes will be unaffected. With regard to the hierarchical structure, HDDS is identical to HDS.
3.2 Token Buckets

Each process is assigned a token bucket, with a limit according to its reservation and the number of tokens in circulation. Only child nodes may use tokens (service requests). When a request is serviced, a token is removed from the child node and each parent above that child in the hierarchy. Likewise, a token coming into the tree will cause the number of tokens in each parent, as well as the child to increment. This system of token usage/disbursal facilitates borrowing, as each parent node is aware of how many tokens are in its child nodes, and thus, how many are available to be borrowed.
3.3 Token Disbursal

Tokens in HDDS are disbursed randomly according to node reservations. A node with a 50% reservation has a 50% probability of receiving a token. This removes the need for parents to keep track of how many tokens each of their children has received. A method in the algorithm updates the probability that a particular node receives a token each time a node is added, removed, or becomes full.

The rate at which tokens flow into the nodes is directly controlled by the hard disk. Initially, the root node is fed with a number of tokens corresponding to the number of requests the disk can have in its queue. When a node receives a request, it uses one token and sends the request to the hard disk. As soon as the hard disk services the request, it releases the token, and the token is re-distributed among the nodes. This is known as token recycling.

A node may receive tokens up to its limit. When a node reaches its bucket limit, it removes itself from the disbursal process until it begins to use tokens again. In Figure 2 for example, if node C becomes full, then each active node, A and B, receives 50% of the incoming tokens.

3.4 Borrowing

If a node has outstanding requests, but has no tokens, it can borrow tokens from another node. Before borrowing can occur, any node with tokens and outstanding requests is allowed
	makeRequests()

serviceRequests()

serviceBorrows()

serviceRequests()

traverse tree in random order

for each node

if it has a positive number of tokens

useTokens()

serviceBorrows()

traverse tree in random order

for each node not already serviced

if any of the node’s parents have tokens

useTokens()

useTokens()

send request to disk

decrement tokens in bucket

for each parent in the hierarchy

decrement tokens in bucket

disburse (int tokens)

while (tokens > 0)

determine which child token goes to

child->disburse(1)

if the node is full, change status to “idle”

recalculate probabilities

Figure 3: Selected algorithm methods and their functions.

to send its request to the disk. This prevents a node from borrowing a token that would have been used by its own node in that time cycle.

If a node needs to borrow, it asks each of its parents in the hierarchy if they have a positive number of tokens. If any of them do, the node uses that token and decrements the count of tokens in every node above it in the hierarchy, including itself. Token counts may be negative, indicating that a debt is owed. A node with a negative number of tokens is allowed to continue borrowing as long as no node with a positive number of tokens wants to use them.

The algorithm functions are described in Figure 3. As tokens are released by the hard disk, they are disbursed. The probabilities associated with each nodes reservation are updated whenever nodes are added, removed, or when a node’s bucket becomes full. Requests may be added to a leaf node at any time. The “makeRequest” method is called once each time cycle. First, nodes with outstanding requests and a positive number of tokens are allowed to send their requests to the disk. Then, each node that did not send a request is given the opportunity to borrow if possible. Both the methods for borrowing and using tokens walk through the tree structure in a random order, preventing any node from consistently getting its requests sent to the disk ahead of others, or from repeatedly being the first to borrow tokens. This is especially important when a limited number of tokens are available for borrowing.

The random disbursal method discussed in 3.3 also works in conjunction with borrowing to prevent a node from monopolizing incoming tokens. Consider a parent with two nodes, A and B, each with 50% reservations. As long as A and B are receiving requests, they will continue to receive tokens. However, if A becomes idle, its bucket will fill to the limit and B will be awarded all of the tokens coming into the tree. If the parent kept track of how many tokens were awarded each node and distributed tokens accordingly, when A became active again the parent would see that A had received many fewer tokens than B, and award all of the tokens for a period of time to A. Node A monopolizes tokens and B is punished for the time that A was idle. A random disbursal has no memory, and tokens are awarded without regard to historical trends.

4 Results

Hierarchical Disk Driven Sharing (HDDS) was simulated in C++. The simulations were designed to test the effectiveness of recycling, the use of limits on token buckets, and the token borrowing repayment system. Simulation also provided a comparison of the original HDS algorithm to the modified HDDS algorithm.
4.1 Recycling

Data collected from the simulations demonstrates that recycling works in the same manner as the traditional rate-based disbursal. The recycle mechanism does not favor any node [image: image3.emf]0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

Time (seconds)

Tokens Received

Expected, Node A

Expected, Node B

HDDS, Node A (1)

HDDS, Node B(1)

HDDS, Node A (2)

HDDS, Node B (2)

HDDS, Node A (3)

HDDS, Node B (3)

 Figure 4: Analysis of random token distribution system.
over any other and correctly distributes tokens according to their reservations. Figure 4 shows a comparison of an expected token distribution and results from three simulations of the random-disbursement method. The simulation analyzes token distribution between two nodes with absolute reservations of 30% and 70%. The token supply is 10 tokens and 1 token/sec is recycled. While the distribution is not perfect, it clearly follows the expected trend.
4.2 Borrowing and Token Bucket Limits

HDDS allows buckets to have negative tokens to indicate that a debt is owed. Bucket limits serve the dual purpose of preventing nodes from accumulating tokens they aren’t using, and reducing the accretion of debt in nodes that repeatedly borrow. The figures below describe a simulation done on a tree containing two child nodes, each with 50% reservations. At time 24, node B ceased receiving requests while node A continued to receive them. Figure 5 reveals that bucket limits prevent node B from collecting tokens that aren’t being used, which has the effect of increasing the rate that tokens are being awarded to the active node, A.

Figure 6 exhibits the debt-capping effect of bucket limits. In the initial (limit-less) simulation, node A accrues a debt of almost 40 tokens, while B collects more and more. The use of limits reduces the debt to a maximum of five (the bucket limit) and rather than sinking farther
[image: image4.emf]0

20

40

60

0 7

14

21 28 35

42 49 56

Time (cycles)

Tokens received

Node A

Node B

[image: image5.emf]0

20

40

60

0 7

14

21 28 35

42 49 56

Time (cycles)

Tokens received

Node A

Node B

Figure 5: Token disbursal without limits (above) and with limits (below)
[image: image6.emf]-40

-20

0

20

40

0 9 18 27 36 45 54

Time (cycles)

Tokens in bucket

Node A

Node B

[image: image7.emf]-40

-20

0

20

40

0 9 18 27 36 45 54

Time (cycles)

Tokens in bucket

Node A

Node B

Figure 6: Debt capping effect of token bucket limits. Above: Without limits; Below: With limits
tokens, even though it is still using them.

5 Future Work

The current data collected on HDDS provides an initial confirmation that the algorithm is functioning correctly. More data needs to be taken and more complicated simulations need to be completed to provide a solid understanding of the algorithm results. An extensive, statistical analysis of the disbursal method also needs to be completed in order to confirm initial results that randomly assigning tokens to buckets based on probability provides a fair distribution of tokens.

More complicated simulations should include three and four level trees with multiple children of varying reservations. Current data is based primarily on a two level, two-child tree. Additionally, the effect of adding and removing nodes from the tree during simulation needs to be examined. It is reasonable to expect that processes in operating systems will likewise begin and end at different times and the effect of those changes to the tree needs to be studied.

Currently the tokens are disbursed via a probability that is solely linked to the reservation of the node. Future modifications may alter this probability to include factors such as number of requests outstanding, total tokens awarded, and how long the node has been idle or active.

6 Conclusion

Preliminary data indicates that HDDS is an efficient, fair, and hard disk driven scheduling algorithm, although more data needs to be collected to confirm these early results. Recycling tokens provides maximum efficiency without the possibility of overloading the hard disk, as it allows the disk to mandate the rate at which tokens are awarded. Conventional schedulers that account for changing disk speeds must have intimate, real-time knowledge of disk internals, whereas HDDS requires no additional lines of communication.

Borrowing under HDDS is restructured to contain a mechanism for repayment of tokens. Processes may borrow unused disk time, but the debt must eventually be repaid. Token bucket limits prevent nodes from accumulating an excessive number of tokens they are not using. The limits also cap the amount of debt that needs to be repaid; debt accrued beyond the inverse of the limit is forgiven.

HDDS has the ability to utilize all available disk time, balance multiple types of processes, and regulate token disbursal to prevent any node from unfairly monopolizing disk time.

Acknowledgements

This research was supported by a National Science Foundation grant. It was conducted through a Research Experience for Undergraduates (REU) at the University of California, Santa Cruz, and in conjunction with the Storage Research Center, especially Scott Brandt.
7 References

[1] J. Wu, S. Banachowski, S. A. Brandt. Hierarchical disk sharing for multimedia systems. ACM International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV 2005), pp. 189–194, Skamania, Washington, June 13–14, 2005.
2 tokens/sec

3 tokens/sec

5 tokens/sec

5 tokens/sec

60%

50%

40%

50%

Global rate = 10 tokens/sec

3

Relative

2

Relative

50% Absolute

B

C

A

Root

PAGE
1

