
QGroundControl: Ground Station for Land, Water, and Air Autonomous Vehicles 
 

Jessica Hall
1
, Bryant Mairs

2
, Gabriel Elkaim

2
 

1
University of Nevada Reno, 

2
University of California Santa Cruz 

University of California Santa Cruz Autonomous Systems Laboratory  

 

A problem that arises from developing autonomous and remote vehicles is the 

question of how to communicate with the vehicle. The user needs to be able to send it 

instructions, gather data from it, or control it in an emergency. This is the role of ground 

stations like QGroundControl (QGC) which is designed to be fast and capable of running on 

a variety of platforms and supports many vehicles simultaneously whether they travel by 

land, water, or air. 

This project focused on improving QGC from both a usability and code development 

standpoint. This included fixing outstanding issues, improving existing unit tests, and 

extending documentation. Due to the open-source nature of QGC many of its users had filed 

bugs which outstripped developer support. The existing unit testing framework, which 

ensures reliable operation of the ground station, was improved. This is of critical importance 

as these vessels can cost several thousands of dollars. Documentation was added to help 

make it easier for developers to continue to improve QGC. Additionally documentation was 

extended for the users who will utilize it to pilot or interact with the vessels in the field. 

 

I. Introduction 

QGC is a ground station for use 

with autonomous vehicles. It is designed to 

be portable so it can be used from a laptop, 

desktop, a tablet etc. QGC was first 

created as a project called PIXHAWK by 

Lorenz Meier and a group of students at 

Eidgenössische Technische Hochschule 

Zürich (ETH Zürich) in 2009 [Pixhawk]. It 

was originally designed for micro air 

vehicles (MAVs), then released as an open 

source project called QGroundControl and 

has since been worked on to be integrated 

with land and water vehicles as well as air 

vehicles [Pixhawk]. 

Some features of QGC include 

support for multiple simultaneous land, air 

or marine vehicles. It provides the user 

with a pilot view and in addition shows a 

live 2D map that displays the position of 

the vehicle. Telemetry provides the user 

with information on the behavior of the 

vehicle. QGC supports the use of Google 

Earth which is used for viewing three 

dimensional maps. It is customizable by 

users even by non-developers. The 

purpose of QGC is to be portable between 

platforms and devices and easy to use.  

 

II. Methods 

GitHub is where the QGC 

repository is stored. GitHub keeps track of 

all the changes made to the repository. 

GitHub is useful because multiple people 

can be working on their own version of 

QGC without affecting the main 

repository. When the developers have 

completed what they are working on, they 

put in a pull request which is a request to 

merge the new code into the main 

repository.  

Valgrind is a program that checks 

for memory leaks. This was used to fix 

memory leaks that were found when the 

unit tests were run. 

QGC is developed and run with the 

development software, Qt. 

The problems addressed during the 

summer were lack of documentation, unit 

tests, and minor bugs within the code. The 

lack of documentation makes it difficult 

for a developer or user to know exactly 

what the program is doing or what the 

code is doing. It is important for the unit 

tests to be working because the code 

should be tested thoroughly so that the 

reliability of the code can be proven. The 

http://www.ethz.ch/index_EN
http://www.ethz.ch/index_EN


program should be free of bugs which 

inhibit performance or usability. 

 

III. Results 

Comments were lacking within the 

code which made it hard to understand 

what the code was doing. Comments 

provide developers with a quick and easy 

way to understand what the code is doing 

without having to read through every line 

of code. Comments were added to some of 

the functions within UAS.cc to provide an 

overview of what the functions do.  

The unit tests for QGC only tested 

the code in the file UAS.cc. The unit tests 

at first did not compile. Once they were 

fixed so that they compiled, they would 

not run correctly due to a segmentation 

fault. The segmentation fault was caused 

by a list of colors. This list was would give 

a new color to every MAV that was 

created.  A static variable was used as the 

index to get the next color in the list. There 

are 19 colors in this list and when 19 

MAVs had been created and destroyed, the 

end of the list had been reached and the 

variable was used to attempt to access 

memory past the end of the list causing a 

segmentation fault. The solution to this 

problem was to fix the code so that the 

variable would loop back to the beginning 

of the list. It is now possible to create more 

than 19 MAVs though there will be more 

than one MAV with the same color. 

 Once the unit tests were compiling 

and running, the unit tests were fixed so 

that they all passed. Valgrind was used to 

find and fix memory leaks that occurred 

when the unit tests were run.  

Documentation on the layout of the 

repository was added to the README 

within the root directory. This was done 

before the root directory was reorganized 

which had many files and folders which it 

made it hard to find things. One example 

of disorganization was that the libraries 

were scattered in different directories. The 

repository was reorganized so that all the 

libraries are in one directory and all source 

files are in another directory and other files 

that did not belong in the library or the 

source directories were put in the 

appropriate directories. Code which 

defined paths to certain files had to be 

changed to reflect the changes made to the 

repository. In addition to rearranging the 

files, unnecessary files were deleted. The 

rearrangement made it easier to find files.  

 . Doxygen is a tool used to 

generate documentation using comments 

that were written in a certain format. 

Instructions on how to use Doxygen were 

added to a README file in the doc 

directory within the repository. 

There were many issues reported 

by users and developers and a few minor 

ones were addressed and fixed. Some were 

suggestions on removing a little bit of code 

or changing a small piece of code. Others 

were suggestions on how to change the 

graphical user interface (GUI) or which 

files to remove because they were 

unnecessary. These changes were made 

and since they did not affect the program 

adversely they were pulled into the 

repository on GitHub.  

 

IV. Conclusions 

The documentation added will help 

users and developers to use QGC. The 

now properly working unit tests will 

ensure that changes will not adversely 

affect the code. The new layout makes it 

easier to find files. The issues that were 

fixed have improved the performance of   

QGC. 

 

V. Future Work 

More documentation needs to be 

added to the files. The documentation of 

the repository needs to be redone to reflect 

the reorganization of the repository. The 

unit tests cover most but not all of the 

functions within UAS.cc and more unit 

tests need to be added to test all of the 

code within QGC. There are more memory 

leaks that need to be fixed. There are many 

other issues reported by users and 

developers that need to be addressed.  

 



 

VI. Acknowledgements 

I would like to thank Professor 

Gabriel Elkaim for the opportunity to work 

in the Autonomous Systems Lab and 

Bryant Mairs for helping me when I 

needed it and for answering my questions. 

I would also like to thank Colt Hangen and 

Matthew Guthaus for their work in making 

SURF-IT a wonderful program and to the 

National Science Foundation for funding 

the program. 

 

VII. References 

Pixhawk (website). Retrieved from https://pixhawk.ethz.ch/overview. 

 

 

 

https://pixhawk.ethz.ch/overview

