
Pyrope: A Nicer Jewel
A Comparison and Analysis of Hardware Description Languages

Rashad Kayed
University of California, Santa Cruz

Micro Architecture Santa Cruz (MASC)
Faculty Advisor: Jose Renau

Graduate Advisor: Haven Skinner

 Abstract— Pyrope is a new Hardware Description
Language that is based on scripting languages and
uses Ruby like structure and aspects. The goal for
Pyrope is to maintain simple programming methods
yet implement high-level capabilities. For example,
Pyrope has the ability to design a pipeline structure
on its own so that a user has fewer aspects to
manage. It is important to build test cases in both
Verilog and Pyrope, then analyze and compare the
results. Once completed, Pyrope will be a user-
friendly Hardware Description Language with
outstanding capabilities and possibilities, such as
less required code to complete a project.

Keywords—Hardware Description Language;

I. INTRODUCTION
Hardware Description Languages, also known as HDL’s,

are wideley used and esssential in the computer engineering
industry today. A hardware Description Language is used in
electronics to describe a circuit, so that a circuit can be tested
with respect to its design, planned funtionality, and operations
[1]. Most HDL’s in the industry today are outdated and have
been around for many decades. Even though these languages
may do the job, they lack essential features that are in other
languages also used in the industry.

Computer Engineers have many tasks when it comes to
prjoects; everything from coming up with an idea to a problem,
to collabarating to seek possible ways to solve the issue, and
writing the actual code that will get the project done. However,
having for example to introudce and initialize each variable
you may have to use before starting your actual code, can be a
hastle, and should not be an aspect of programing to think
twice about.

Today the two most common Hardware Description
Languages are VHDL and Verilog. Verilog was first introdced
in 1984, and has been developing gradually since it was first
used in 1985 [2]. Verilog is similar to the C language, and is a
low level hardware language. It is most commonly used when
designing and implementing digital circuits at the register
transfer level.

Verilog is also important for analog circuits and mixed signal
circuits. The first major change to Verilog was in 1986, which
was gate level simulation, known as the “XL algorithm”.
Verilog allowed users to model at higher levels of abstraction
[2]. In 1988 Synopsys made a breakthrough allowing Verilog to
be used as an input language, allowing for the top-down coding
methodology to be correctly implemented. Finally, after efforts
from different parties, Verilog became and IEEE standard in
1995 [2].

 Besides these few changes over the decades, not much has
changed with Verilog, nor have any major advancements been
made. Which prompted for work to be done on introducing a
new Hardware Description Language by the name of Pyrope.
Pyrope makes simple but important improvements that can
make a huge difference in electronics. The focus of our
research was to build test cases of code in both Verilog and
Pyrope and analyze the outcome of our work. The work on this
project helped further support our hypothesis that Pyrope is a
more efficient language overall, and the specifics of this will be
discussed further in this report.

II. HARDWARE DESCRIPTION LANGUAGES
 A hardware Description Language is used in electronics to
describe a circuit, so that a circuit can be tested with respect to
its design, planned funtionality, and operations [1]. A
Hardware Description Language can be used to describe
something like a microprocessor or a flip flop switch.

 The most common Hardware Description Languages are
VHDL and Verilog. These two languages are used in todays
industry to compliment projects in electronics and other
engineering. Verilog is a language common to C since it uses
similar design elements and behaviours. Verilog is most
commonly used when designing and implementing digital
circuits at the register transfer level.

 Pyrope uses some Ruby language aspects, so it was named
Pyrope after another similar gemstone. Pyrope creates a
simpler language for digital architecture by implementing
programming constructs. Pyrope’s purpose is to maintain the
functionality of low-level Verilog code, yet also implement a
highly expressive language with abstraction capabilities [5].

 Our work focused on building test cases in both Verilog
and Pyrope languages. The point of the test cases is to write the

same code in both Verilog and Pyrope, so that it can be
compared and analyzed. The physical coding in the two
languages helped us see the difficulties in both languages and
come up with suggestions to make Pyrope a more advanced
and beneficial Hardware Description Language. One of the test
cases built and studied was a booth multiplier.

III. BOOTH MULTIPLICATION ALGORITHM
Booth’s algorithm can be implemented by constantly using

unsigned binary addition and performign shifts to the values.
First, asign the variable m to be the multiplicand and r to be the
multiplier. The variable A will be the value of m, and the
remaining leftmost bits are to be filled with zeros. The variable
S will hold the value of negative m, and the reamining bits are
to be filled in with zeros. For the variable P fill in the most
significant bits with zeros and then add the value of r to the end
of this [4]. The variable y holds the number of bits in r.

Now to start operating using the algorithm, figure out what
the two rightmost bits of P are. If they are 01, compute the
value of P+A and ignore overflow. If the rightmost bits of P are
10, compute the value of P+S, and ignore overflow. If the
rightmost bits are 00 or 11, do not compute anything and move
on [4]. After this arithmetically shift the value you computed
for P and change the value of P to now be this new value. Now
repeat the computation of P based on the value of the rightmost
bits, and shift after each computation ‘y’ times. Last drop the
least significant bit from P and this is your product of m and r.

A. Verilog

In the Verilog implementation of the booth multiplication
algorithm you begin by defining and allocating bits to the
variables you will use. You then make your mask, which you
will use to multiply to your ‘P’. Depending on the product you
obtain you will choose an arithmetic function to perform. For
example, if your p mutiplied with your mask produces the
rightmost bits to be ‘10’ you add S to P, and you shift P. After
going through the loop up to ‘y’ times, you shift one final time
to obtain the final answer.

always	
 @	
 (posedge	
 en,	
 posedge	
 reset)	

for(i=0;	
 i<4;	
 i=i+1)	
 begin	

	
 	
 mask='b000000011;	

	
 	
 if(p&mask	
 ==	
 01)	
 begin	

	
 	
 	
 	
 p=p+a;	

	
 	
 	
 	
 p=p>>1;	

	
 	
 end	

	
 	
 	
 	
 else	
 if(p&mask	
 ==	
 10)	
 begin	

	
 	
 	
 	
 	
 	
 p=p+s;	

	
 	
 	
 	
 	
 	
 p=p>>1;	

	
 	
 	
 	
 end	

	
 	
 	
 	
 	
 	
 else	
 if(p*mask	
 ==	
 00)	
 begin	

	
 	
 	
 	
 	
 	
 	
 	
 p=p;	

	
 	
 	
 	
 	
 	
 	
 	
 p=p>>1;	

	
 	
 	
 	
 	
 	
 end	

	
 	
 	
 	
 	
 	
 	
 	
 else	
 begin	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p=p;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p=p>>1;	

	
 	
 	
 	
 	
 	
 	
 	
 end	

B. Pipeline Structure
In Pyrope the code is split into different stages. This is a

feature of Pyrope that makes it an easier language to code in;
you are able to divide the different functions into ‘chunks’
called stages. These stages are a representation of the pipeline
structure. The blocks are a representation of the logic behind
flops or latches. In the pipeline structure as seen in Fig. 1, there
exists a cloud which represents the combinational logic,
meaning logic based solely on the inpute given. Also, there are
registers in the pipeline structure which store the data
computed or inputed from previous logic. From these registers
you are able to reuse the information in the next cloud of
computational logic. This is one of the main improvements of
Pyrope, because when coding in Pyrope a user does not need to
keep track of all their inputs and outputs [5]. The Pyrope stage
structure implements this feature for the user.

Fig. 1: The pipeline structure, containg a cloud of computational
logic, and a register to store output from input.

C. Pyrope
Pyrope offers many advancements and changes to coding

with a Hardware Description Language. First, it implements
the pipeline structure on its own like mentioned above also it
makes using a Hardware Description Language easier and
neater. It is easier to spot and organize your code by separating
your code into stages. In the first stage of code in the Pyrope
implemenation of the Booth Algorithm there is a stage called
add. In this stage we begin by declaring our variable P with an
ampersand. We then multiply our mask to P and check if the
product is either a ‘01’ or a ‘10’, depending on that output you
add accordingly. In the next stage named shift, you shift P by
one place, since this applies to more than one case having the
shift operation in its own block, it makes it easier to access
whenever needed.

The next stage, ‘drop’, is used to drop the last bit in P. The
pipe together function is basically matching and inializing the
variables to their valuables for the entirity of the program. And
the “repeat 8”, is a loop that makes the program loop through
these stages eight times. Lastly, the program is ended with

arrows linking the different stages together in the appropriate
order they are to be referenced.

stage	
 add	

@p=@p&mask	

if(p&mask)	
 ==	
 (01)	

@p=@p+a	

elif	
 (p&mask)	
 ==	
 (10)	

@p=@p+s'	

	

stage	
 shift	

@p=@p>>>1	

	

stage	
 drop	

@p=@p>>>1	

	

pipe	
 together	

m	
 as	
 bits:8	

s	
 as	
 bits:8	

p	
 as	
 bits:9	

mask	
 as	
 'b001	

	

repeat	
 8;	

	
 add	
 -­‐>	
 shift	
 -­‐>drop	

IV. RESULTS
 After careful research through reading and building test
cases it is evident that Pyrope is a more efficent language than
Verilog. Pyrope allows a user Global Type inference, where
one can iniliaze their variables somewhere in their code and
have the values of those variables saved and accessible. Pyrope
was also found to reduce boilerpoint code, which is all the
needed declarations and inilizations before one starts to
program. For example, in the counter example in Fig. 2, all
lines of code present can be eliminated or significantly reduced
if coding the same example in Pyrope.

Fig. 2: Formalities such as the code in the box above are not needed
in Pyrope, most variables and initilization of their values are implicit.

In Pyrope the two lines of code that would represent a mostly
fully functional counter are:

@Counter	
 =	
 8h0	

@Counter	
 =	
 @Counter	
 +	
 Amt	
 if	
 En	

	

 Since there is a reduction to boilerpoint code, as shown in
the previous examples, there obviously will be a change in the
amount of code between the two languages. We found and
confirmed through our research that coding in Pyrope offers
20-40% less lines of code then coding the same example in
Verilog[5]. The following table Fig. 3 displays different coding
exmaples performed in both Verilog and Pyrope with their
corresponding lines of code, and percent reduction between the
two languages.

 Fig. 3: Soucre: Jose Renau and Haven Skinner

 Most importantly the pipeline structure is a huge
improvement in the field of Hardware Description Languages,
this is because of the impementation of stages. If stages are
able to be put into affect and used properly the use of buses
will not be neccessary, busses being the arrays of bits.
Currently, Verilog has a user manually define constants and
there is no support for type checking[5]. In pyrope the user is
able to express their code in simpler ways, and functions such
as a clock and reset are implicit.

Fig. 4: This table compares certain features of Hardware Description
Languages, between the five specified languages in the table[5].

 LESSONS LEARNED

 Using Verilog and Pyrope to code and build test cases for
our research purposes had both its pros and cons. To start with,
Verilog is a Hardware Description Language that has been
around for decades, hence, it is well documented. You can
easily find sources for learning about Verilog and its specific
attributes by reading a book or searching online. Verilog is
similar to C, so it is not too hard to catch the rhythm and style
of coding in it. On the other hand, Pyrope is a new language
still in the building phase, so it does not have much sources of
reference to learn more from. This for me was the hardest
aspect of using Pyrope, not having much to refer to. Also, in
Pyrope it is hard to get accustomed to all the syntax, such as
shift operators and dealing with overflow.

V. CONCLUSION
 In our research we sought to compare the two languages
Verilog and Pyrope. Pyrope is a new Hardware Description
Language that aims to offer more user friendly features and
aims to bettering the process of using a Hardware Description
Language. Our main goals were to build test cases of the same
example using the two languages. This would aid us in
determining the difficulties when coding in Pyrope rather than
Verilog. Also, by becoming familiar with the two languages we
would be able to suggest improvements that would better the
language. Some of the recommendations that were thought of
during our work was as simple as fixing syntax for overflow in
the code, and suggesting a VIM compatability highlighter.

 ACKNOWLEDGEMENT

 This work was supported by UCSC’s SURF-IT 2013,
funded by the National Science Foundation. I want to
acknowledge Professor Jose Renau and Haven Skinner who
guided the research and offered support throughout the
program. Also, I would like to thank Matthew Guthaus and
Colt Hangen and all other faculty that aided in making this
program a success.

 REFERENCES

[1] http://www.wordiq.com/definition/Hardware_descriptio

n_language 2010
[2] http://vol.verilog.com/VOL/main.htm 2002
[3] http://www.verilog.com/index.html 2012
[4] http://en.wikipedia.org/wiki/Booth%27s_multiplication

_algorithm
[5] J. Renau, H. Skinner, “Pyrope”, University of

California, Santa Cruz, unpublished

