
Physical Design of Rachael SPARC

Benjamin LaCara and Matthew Guthaus
bsamson@soe.ucsc.edu, mrg@soe.ucsc.edu

Computer Engineering Department, University of California Santa Cruz

Abstract – The Very Large Scale
Integration Design Automation (VLSI-DA)
group at UCSC has a strong focus on
physical circuit design, high-performance
resonant clock synthesis and large-scale
circuit optimization. The group is in need
of a physical implementation of a
microprocessor to use as a test vehicle for
high-performance resonant clock
synthesis using on-chip inductors that
recycle the energy of the clock network.
This project is the first step in providing
the group with a microprocessor which is
fully synthesizable in multiple technology
libraries. The physical implementation is
of a 32-bit, open-source microprocessor,
called Rachael SPARC. This work is
branching off from the Micro Architecture
Lab at Santa Cruz's (MASC) progress on
developing and modifying Rachael. Our
physical implementation is created using a
commercial ASIC design flow with
Synopsys Design Compiler and Cadence
First Encounter. By interfacing to these
tools through the Design Exchange Format
(DEF), our resonant clock synthesis tool
will add resonant clocks to the prototype
microprocessor.

I. Introduction
The ASIC design flow starts with a design

written in a hardware description language
(HDL), such as Verilog or VHDL, and moves it
through Synthesis, Floorplanning, Place &
Route and Verification of Circuit. This flow
also typically includes behavior simulations
and static timing analysis at multiple points.

The focus of my work this summer was on
Synthesis with Design Compiler and Place &
Route with Encounter. The HDL was provided
by the open-source Rachael SPARC
microprocessor and MASC. One of the major

reasons our group decided to take up the
Rachael SPARC microprocessor is because it
is written in Verilog. This is significant due to
Verilog’s popularity in the ASIC industry and
in academic institutions.

The greatest objective of my work was to
modify the scripts these programs used to the
point where they would compile without
warnings or errors while generating net-lists
and layouts. This task required
communication and joint work between the
VLSI-DA and MASC groups.

II. Synopsys Design Compiler (DC)
For this design, we fed DC a script written

in tcl which housed the necessary commands
to generate a net-list with an emphasis on
timing and the critical path. The basic
synthesis flow of DC moves through these
high-level phases: Specify libraries, read
design, define design environment, set design
constraints, compile strategy, optimize
design, analyze and resolve design problems,
and save the design database.

When specifying the libraries we
designate the directory of the files which
define the technology and symbols used in
the design. At this stage of the process, we are
using 90nm technology.

When reading in the design, the analyze
command was used on all of the Verilog files.
Here, the SYN_ASIC flag is set high so non-
synthesizable code is ignored. Similarly, a
USE_STM90 flag is set to select the technology
size in each file.

The design environment and constraints
are established in a script named dc_setup
written by the MASC group. Here, clock
periods and uncertainties, as well as input
and output delays are defined. Output load
constraints are also established.

For this design, we use a bottom up
compiling strategy. This is done to reduce the
number of unresolved reference warnings.

Given the tight timing constraints of the
design, the compile_ultra command is chosen
as our optimization process to receive better
quality of results. This is established in the
dc_setup script.

Another script written by MASC, dc_stats,
is used to produce reports on area, timing,
power, and quality of results. These are all
attained using the “report_” command.

Following the reports generation, a
Verilog net-list is produced which is used in
Encounter. The command used is, simply,
write.

Topographical mode in DC was
experimented with for a while but ultimately
proved unfruitful. This tool is used to
accurately predict post-layout timing, area,
and power. The mode was given up because
topographical mode has unsupported
commands that cause error messages to be
issued and causes the script to stop executing.
In Encounter there are commands which do
very similar tasks that can be implemented
when the flow is further developed.

III. Cadence First Encounter
The approach used for Encounter is very

similar to that used with DC. A tcl script
which houses all of the commands used to
build the design is ran in the encounter
terminal. The high-level synthesis flow of
encounter moves through these phases:
loading deign, floorplanning, IO and cell
placement, special net routing, clock tree
synthesis (CTS), in-place optimization and
global and detailed routing.

First of all, given the libraries and tools
available which are required for the design,
Encounter has to be used on a 64 bit machine.
The line used to launch Encounter follows–
“encounter -64 –init
../../soc_rachael_rnode.tcl”. Following this, the
technology libraries and search paths are
specified.

A configure file is used when loading the
design. For Encounter multiple lef files are
used. Along with these, a timing configuration

file is used and delay and buffer footprints are
specified.

The floorplanning power ring section of
the script I did not modify. The floorplan
specifies the aspect ratio, row utilization and
space around the core.

The script originally had a command,
“runN2NOpt – effort high,” being used before
placing the design. This command
restructures and remaps elements on the
critical path of the design. This command was
consistently causing the script to quit
prematurely, laying out nothing. This
command failed with an error saying
Encounter could not find the buffer or
inverter libraries. Given that runN2NOpt is
not required for a laid out design, the
command was commented out of the code.

Placing the design is simply done with the
“placedesign” command.

Following this is pre-CTS. This is as far as
I got with positive results during the program
this summer. Command, “buildTimingGraph,”
is used for timing analysis before CTS.
Command, “defOut –floorplan –netlist …,” is
used here to create a def file which will be
used for debugging at this point.

IV. Results
Over the course of this project the focus

changed from optimizing timing and changing
the technology libraries to having a series of
scripts which would produce a functioning
design. Given this, some of the resulting
statistics are bad or non-existent but should
be mentioned here to show what still needs
to be done.

Results from Synopsys Design Compiler:

Critical Path Slack: -30.00ns
Critical Path Length: 0.12ns
Critical Path Clock Period: 1.00ns
Total cells: 13437
 Hierarchical: 114
 Leaf: 13323
 Sequential Latch: 57
 Sequential Flop: 3149
 Combinational: 10117
Of these, the most notable problems are

the negative slack and the number of latches.

If anything, the slack needs to be very close to
zero if it is negative. A small timing difference
from zero can often be made up in actual
physical layout. Also, there should be no
latches at all.

Resulting layout from Cadence Encounter:

The above layout shows the state of the
design at clock tree synthesis. As the flow
continues to be corrected filler cells and pins
will be added. These will change the size of
the design as well as the way it appears.

V. Acknowledgements
I would like to thank the National Science
Foundation for providing the funding which
enabled me to participate in this program. I
would also like to thank the University of
California Santa Cruz, SURF-IT and its staff for
the opportunity to take part in this
experience this summer. Finally, I would like
to thank Matthew Guthaus for the
opportunity to work on this project and for
his guidance throughout the process.

