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 Current circuit design techniques are constrained by physical properties.  Component 

size, trace width, and supply voltage all limit layout possibilities.  This project will examine how 

varying supply voltage can affect layout design while still achieving the desired output.  Because 

of the number of layouts possible for a given number of transistors, it is necessary to select an 

efficient method of evaluating a circuit layout.  For this project, Dr. Guthaus choose to 

implement genetic algorithms as a key component of the evaluation of circuit layouts. 

 Genetic algorithm implementations have distinct steps that must be in.  A population of 

n binary strings is randomly generated.  These binary strings can be referred to as chromosomes, 

individuals, or genotypes.  Each individual is evaluated with respect to a particular specification, 

which is usually the function to be optimized.  A measure of fitness, or survivability is then 

assigned to each genotype.  Based on this fitness score, the population undergoes the process of 

selection.  A set of n individuals is then chosen in such way that a higher fitness score confers 

higher chances of selection to an individual.  This way, the selection process is biased towards 

fitter individuals.  After selection, pairs of individuals are randomly chosen from the selected 

pool, and with a particular probability, undergo the recombination process, also called crossover.  

The crossover operation splices the contents of each pair of individuals, creating two offspring 

through mixing the genetic contents present in their parents' strings.  In case the two parents do 

not undergo the crossover operation, they are copied unchanged to the new pool.  The mutation 

operator is then applied to the new pool of individuals produced after the application of 

crossover.  Mutation is typically applied with a very low rate to all bit positions that constitute a 



given individual.  If successful, the value of the particular bit is negated.  Otherwise, the bit is 

left unchanged.  After mutation, the production of a new generation of individuals is complete.  

This new generation then goes through the process as described, from evaluation to mutation.  

This cycle repeats until a stop criterion is met, such as when a maximum number of generations 

is reached or a desired solution is found. 

 There are two distinct types of transistors, termed N-type and P-type.  The type of 

substrate that the transistor is built on classifies these.  Transistors' minimum required operating 

voltage is currently 1.5v-1.8v depending on manufacturing and reliability guidelines.  Input 

voltages below these values provide unreliable outputs.  Transistors operating below 1.5v have 

produced analog-like outputs.  It is unknown what sort of circuits could be developed to take 

advantage of this analog-like behavior.  This is the target of our research. 

 The use of simulation in circuit design is well established.  Using simulation, it is 

possible to test circuits for proper behavior before taking the costly steps of manufacture.  When 

exploring new techniques, simulation allows multiple variables to be assessed in a reasonable 

manner.  The simulator that is interfaced with accepts a circuit definition file such as this NAND 

gate. 

* first line must always be a comment or blank since it is ignored 
simulator lang=spice lookup=spice 
 
* include the transistor models 
.lib "tsmc18dN" NMOS 
.lib "tsmc18dP" PMOS 
.usim_opt mos_method=s postl=1 
 
* gnd! is always 0 
.global 0 vdd! gnd! 
 
* set the supply voltage 
VCC vdd! gnd! dc 1.8 
 
* list of transistors and interconnects 
M1 (net6 a gnd! gnd!) tsmc18dN w=270.0n l=180.0n  
M0 (z b net6 gnd!) tsmc18dN w=270.0n l=180.0n  
M3 (z b vdd! vdd!) tsmc18dP w=270.0n l=180.0n  
M2 (z a vdd! vdd!) tsmc18dP w=270.0n l=180.0n  
 
* put an output load on the circuit 
C0 z gnd! 100f 



 
* define the input stimulii for the above circuit 
VINA  a  gnd!   PULSE(0 1.8 0 5n 5n   10n   50n) 
VINB  b  gnd!   PULSE(0 1.8 0 5n 5n   20n  100n)  
 
* save the output to a text file 
.print V(z) V(a) V(b)  
 
* specify to run a transient simulation for 700ns with 250ps resolution 
.tran 250p 700n 
 
.end 

 
 The list of transistors and interconnects is the information needed for the genetic 

algorithm.  Each time that an individual is tested for fitness, a circuit definition file, as above, is 

generated for the simulator.  This is the Ruby code that was written to extract the circuit layout 

from a circuit definition file. 

 
def parse_genome( lines ) 
  net_list = Array.new 
  nodes = Array.new 
  node_lookup = Array.new 
  genome = String.new 
  #get transistor network description 
  lines.each { |w| net_list << w.scan( /w\d+\s+\(\w+\!?\s+\w+\!?\s+\w+\!?\s+\w+\!?/ ) } 
  #get list of nodes in the transistor network 
  node_line = net_list.uniq 
  node_line.each do |nodes| 
    nodes.each do |node_string| 
      nodes << node_string[4..-1].split 
    end 
  end 
  #generate node lookup array  
  nodes.each do |connections| 
    connections.each do |sub_node| 
      if( node_lookup.count_of( sub_node ) == 0 ) then 
        node_lookup << sub_node 
      end 
    end 
  end 
  #generate binary string based on node_lookup index 
  nodes.each do |connections| 
    connections.each do |sub_node| 
      genome += sprintf( "%b", node_lookup.index( sub_node ) ) 
    end 
  end 
  genome 
end 

 
 Once the binary string is produced, the genetic algorithm uses it to produce the 

population of individuals.  As each individual is tested for fitness, a circuit definition file is 

created with the new interconnect layout from the individual’s converted bit string.  The circuit 

definition file is submitted to the simulator for processing.  When the simulator is finished, an 

output file is created showing the performance of the circuit.  The genetic algorithm reads this 



output file to determine if the circuit produced output that falls within parameters.  If the output 

is good, then the originating binary string is added to the evolution pool for the next generation.  

Otherwise the bit string is discarded.  This is the Ruby code that was written to extract the raw 

data from the simulator output file.  

 
def read_output_file 
  output = Array.new 
  return_array = Array.new 
  lines = read_file( get_file_name + OUT )   
  lines.each { |w| output << w.scan( /-?\d+[.]\d+[ayzfpnum]?/ ) } 
  output.each { |out_line| 
    temp = Array.new 
    out_line.each { |column| 
      last_char = column[-1] 
      lp = column.to_f 
      multiplier = case last_char 
        when 121 then 1.0e-24 
        when 122 then 1.0e-21 
        when 97  then 1.0e-18 
        when 102 then 1.0e-15 
        when 112 then 1.0e-12 
        when 110 then 1.0e-9 
        when 117 then 1.0e-6 
        when 109 then 1.0e-3 
        else 1 
      end 
      temp << lp * multiplier 
    } 
    return_array << temp 
  } 
  return_array 
end 

 

 Work is currently ongoing in this area.  Items to be addressed include: 

• Generation of circuit definition file 

• Determination of simulator output pass/fail 

• Support for Sun Grid Engine 

Some possible implementations of this research include super-low voltage processors, new novel 

designs of standard circuit models, and eventually, a way to expand on the binary nature of 

computers.  As work on this project will be continuing, expect to see more information in the 

future. 


