
Exploring the Use of Sub-Threshold Transistors Using Genetic Algorithms

David Lewis, Dr. Matthew R. Guthaus
2007 UCSC SURF-IT

NSF Grant #CCF-0552699

 Current circuit design techniques are constrained by physical properties. Component

size, trace width, and supply voltage all limit layout possibilities. This project will examine how

varying supply voltage can affect layout design while still achieving the desired output. Because

of the number of layouts possible for a given number of transistors, it is necessary to select an

efficient method of evaluating a circuit layout. For this project, Dr. Guthaus choose to

implement genetic algorithms as a key component of the evaluation of circuit layouts.

 Genetic algorithm implementations have distinct steps that must be in. A population of

n binary strings is randomly generated. These binary strings can be referred to as chromosomes,

individuals, or genotypes. Each individual is evaluated with respect to a particular specification,

which is usually the function to be optimized. A measure of fitness, or survivability is then

assigned to each genotype. Based on this fitness score, the population undergoes the process of

selection. A set of n individuals is then chosen in such way that a higher fitness score confers

higher chances of selection to an individual. This way, the selection process is biased towards

fitter individuals. After selection, pairs of individuals are randomly chosen from the selected

pool, and with a particular probability, undergo the recombination process, also called crossover.

The crossover operation splices the contents of each pair of individuals, creating two offspring

through mixing the genetic contents present in their parents' strings. In case the two parents do

not undergo the crossover operation, they are copied unchanged to the new pool. The mutation

operator is then applied to the new pool of individuals produced after the application of

crossover. Mutation is typically applied with a very low rate to all bit positions that constitute a

given individual. If successful, the value of the particular bit is negated. Otherwise, the bit is

left unchanged. After mutation, the production of a new generation of individuals is complete.

This new generation then goes through the process as described, from evaluation to mutation.

This cycle repeats until a stop criterion is met, such as when a maximum number of generations

is reached or a desired solution is found.

 There are two distinct types of transistors, termed N-type and P-type. The type of

substrate that the transistor is built on classifies these. Transistors' minimum required operating

voltage is currently 1.5v-1.8v depending on manufacturing and reliability guidelines. Input

voltages below these values provide unreliable outputs. Transistors operating below 1.5v have

produced analog-like outputs. It is unknown what sort of circuits could be developed to take

advantage of this analog-like behavior. This is the target of our research.

 The use of simulation in circuit design is well established. Using simulation, it is

possible to test circuits for proper behavior before taking the costly steps of manufacture. When

exploring new techniques, simulation allows multiple variables to be assessed in a reasonable

manner. The simulator that is interfaced with accepts a circuit definition file such as this NAND

gate.

* first line must always be a comment or blank since it is ignored
simulator lang=spice lookup=spice

* include the transistor models
.lib "tsmc18dN" NMOS
.lib "tsmc18dP" PMOS
.usim_opt mos_method=s postl=1

* gnd! is always 0
.global 0 vdd! gnd!

* set the supply voltage
VCC vdd! gnd! dc 1.8

* list of transistors and interconnects
M1 (net6 a gnd! gnd!) tsmc18dN w=270.0n l=180.0n
M0 (z b net6 gnd!) tsmc18dN w=270.0n l=180.0n
M3 (z b vdd! vdd!) tsmc18dP w=270.0n l=180.0n
M2 (z a vdd! vdd!) tsmc18dP w=270.0n l=180.0n

* put an output load on the circuit
C0 z gnd! 100f

* define the input stimulii for the above circuit
VINA a gnd! PULSE(0 1.8 0 5n 5n 10n 50n)
VINB b gnd! PULSE(0 1.8 0 5n 5n 20n 100n)

* save the output to a text file
.print V(z) V(a) V(b)

* specify to run a transient simulation for 700ns with 250ps resolution
.tran 250p 700n

.end

 The list of transistors and interconnects is the information needed for the genetic

algorithm. Each time that an individual is tested for fitness, a circuit definition file, as above, is

generated for the simulator. This is the Ruby code that was written to extract the circuit layout

from a circuit definition file.

def parse_genome(lines)
 net_list = Array.new
 nodes = Array.new
 node_lookup = Array.new
 genome = String.new
 #get transistor network description
 lines.each { |w| net_list << w.scan(/w\d+\s+\(\w+\!?\s+\w+\!?\s+\w+\!?\s+\w+\!?/) }
 #get list of nodes in the transistor network
 node_line = net_list.uniq
 node_line.each do |nodes|
 nodes.each do |node_string|
 nodes << node_string[4..-1].split
 end
 end
 #generate node lookup array
 nodes.each do |connections|
 connections.each do |sub_node|
 if(node_lookup.count_of(sub_node) == 0) then
 node_lookup << sub_node
 end
 end
 end
 #generate binary string based on node_lookup index
 nodes.each do |connections|
 connections.each do |sub_node|
 genome += sprintf("%b", node_lookup.index(sub_node))
 end
 end
 genome
end

 Once the binary string is produced, the genetic algorithm uses it to produce the

population of individuals. As each individual is tested for fitness, a circuit definition file is

created with the new interconnect layout from the individual’s converted bit string. The circuit

definition file is submitted to the simulator for processing. When the simulator is finished, an

output file is created showing the performance of the circuit. The genetic algorithm reads this

output file to determine if the circuit produced output that falls within parameters. If the output

is good, then the originating binary string is added to the evolution pool for the next generation.

Otherwise the bit string is discarded. This is the Ruby code that was written to extract the raw

data from the simulator output file.

def read_output_file
 output = Array.new
 return_array = Array.new
 lines = read_file(get_file_name + OUT)
 lines.each { |w| output << w.scan(/-?\d+[.]\d+[ayzfpnum]?/) }
 output.each { |out_line|
 temp = Array.new
 out_line.each { |column|
 last_char = column[-1]
 lp = column.to_f
 multiplier = case last_char
 when 121 then 1.0e-24
 when 122 then 1.0e-21
 when 97 then 1.0e-18
 when 102 then 1.0e-15
 when 112 then 1.0e-12
 when 110 then 1.0e-9
 when 117 then 1.0e-6
 when 109 then 1.0e-3
 else 1
 end
 temp << lp * multiplier
 }
 return_array << temp
 }
 return_array
end

 Work is currently ongoing in this area. Items to be addressed include:

• Generation of circuit definition file

• Determination of simulator output pass/fail

• Support for Sun Grid Engine

Some possible implementations of this research include super-low voltage processors, new novel

designs of standard circuit models, and eventually, a way to expand on the binary nature of

computers. As work on this project will be continuing, expect to see more information in the

future.

