

Software Defined Networking and Services

Jonathan Lim
University of California, Santa Cruz

California, USA
jflim@ucsc.edu

Katia Obraczka
University of California, Santa Cruz

California, USA
katia@soe.ucsc.edu

Abstract— Software-defined networking (SDN) is a new
paradigm that aim at making networks programmable by
decoupling network control from the data forwarding
hardware. OpenFlow, a notable SDN protocol, provides an
API that lets a logically centralized control element, called
a network operating system or "controller", to organize
OpenFlow-enabled switches. Such abstractions promote
network innovation by permitting finer-grained control
and simplified service deployment over the underlying
data plane. In our work, we examine how SDN can be used
to provide customized services to users. In order to test
and evaluate the performance of such services, we create
an OpenFlow testbed consisting of OpenFlow-enabled
network elements.

Keywords—networks; OpenFlow; management; testbed;
experimentation

I. INTRODUCTION

 Networks play a major role in our lives today. Networks
carry lots of traffic and are critical to the success of businesses
and institutions. As networks continue to increase in size and
complexity, managing networks will be harder. Software-
defined networking (SDN) is an architecture that makes
networks programmable. Two main ideas associated with
SDN is the separation of the data plane from the control plane
and the ability to create higher level abstractions. With SDN,
network operators can have better control of their networks.
SDN will also reorganize the way networks are built upon
today so that protocols can be run as applications on top of a
network operating system. The aim of this research is to
construct an OpenFlow testbed for evaluating the performance
of such network services. To experiment with programmable
networks, we implemented a simple multipath forwarding
algorithm on the controller.

II. BACKGROUND

Prof. Scott Shenker notes that networks have become part
of the critical infrastructure of business, schools and homes
and “this success is a blessing and a curse” [1]. While network

research becomes more relevant, new ideas will make smaller
impacts. Any new idea requires successful test results on
real-life networks to convince wide-spread deployment of the
idea. Since networks today are large and heavily used, many
new ideas aren’t tested on real-life networks because to since
the risk of failure outweighs foreseeable gains. Any mistake
can cause networks to crash and cost businesses lots of money.
Also, many switches and router manufacturers design closed
systems so people cannot implement their own protocols onto
their own devices. The lack of new ideas impacting networks
leads many to say that the network infrastructure is “ossified”
[1]. To counter this problem, Stanford researchers developed
OpenFlow [1], an open protocol that allows network operators
and developers to partition network traffic on network devices
and to insert flows into the proprietary devices while not
exposing the inner workings of the devices. OpenFlow
provides the network operating system with a standardized
way to talk to the devices in the network, regardless of the
manufacturer/model.

III. SOFTWARE-DEFINED NETWORKS

In a non-SDN network view, the data plane and the control
plane are both in each device. The network is distributed where
each device manages its own state and each device has its own
operating system and specialized forwarding hardware. A
device from one manufacturer might have a different
configuration process from a device from a different
manufacturer.

In a SDN network view, the data plane and the control plane
are separated. OpenFlow switches become simple packet
forwarding hardware that perform actions when incoming
packets match rules of inserted flows. The controller is
logically centralized and will control the network state [2]. The
controller will insert and delete flows from the flow tables of
the OpenFlow switches using the OpenFlow protocol.
Software-defined networking will allow people to customize
network services for their needs and to exert finer-grained
control over their networks.

This work was supported by the UCSC SURF-IT 2012 Research
Experience for Undergraduates Site, NSF grant CNS-1156606.

IV. TESTBED

The testbed consists of three TP-Link TL-WR1043ND

gigabit routers, two desktop computers, and a laptop running
Floodlight [3] as the controller. The network elements are
linked together as shown in Figure 1. As mentioned previously,
the control and the data elements are separated. The control
links are those that connect the controller to hub and the hub to
switche and the data links are the remaining links. One way to
turn a commercial switch to an OpenFlow switch is by using
Pantou and running OpenFlow as an application on top of
OpenWRT[4], an operating system for embedded devices.
OpenWRT allows users and developers to choose packages
and customize their devices in ways that may not have been
possible before. We used a pre-compiled binary image for
OpenFlow 1.0 with the TL-WR1043ND, which is offered on
the OpenFlow website. For our purposes, three configuration
files (network, OpenFlow, wireless) need to be filled in in
order for the testbed to function. In the network file, we used
the default network configuration to set five wired ports. In
the OpenFlow configuration file, some ports of TL-
WR1043ND are designated to be OpenFlow ports so that the
controller can use them to send flows on. The controller’s IP
address is also specified along with relevant information such
as mode and datapath ID. The wireless file is configured for a
simple WLAN and will be modified in the future as it has not
been used in the testbed yet.

Figure 1: OpenFlow testbed

V. MULTIPATH FORWARDING

The multipath forwarding algorithm was implemented in the
forwarding module of Floodlight. It runs on top of the
controller similar to an application. We were motivated to
compute multiple paths for a given source/destination pair to
partially load balance on the network. At the time of this
paper, the Floodlight forwarding module computes the
shortest path based on hop count. By inserting a flow with
multiple paths, network traffic can be shared on multiple
paths. The multiple path selection algorithm used was the
Multipath Dijkstra algorithm [5]. The algorithm is similar to

the Dijkstra algorithm except it adjusts the weights of each
link depending on whether the link was selected for a previous
path or not. Different values can influence the number of
different paths found.

VI. CONCLUSION AND FUTURE WORK

The testbed functions correctly when it is directly connected
with cables. Setting up the testbed wirelessly will allow us to
connect with other testbeds such as the larger OpenFlow
testbed at INRIA Sophia Antipolis and expand our testing
environment greatly. We also plan to deploy additional
software-based switches into our testbed. The multipath
forwarding function was intended to calculate multiple paths
based on different cost metrics but we were not able to collect
enough metrics to implement the idea further. As future work,
we plan to explore ways to customize services further which
will enable the controller to handle host application needs. We
plan to export an API that allows host-to-controller
communication for transmitting relevant information. This
includes determining the appropriate cost metric to use and
other options such as multiple v. single path choices.

ACKNOWLEDGMENT

I would like to thank Marc Mendonca for mentoring and
answering questions I had regarding SDN and OpenFlow. I

would also like to thank the Floodlight development for
answering questions regarding controllers.

REFERENCES

[1] N. McKeown, et al., “OpenFlow: Enabling Innovation in Campus

Networks”, ACM SIGCOMM CCR, Vol. 38, Issue 2, March 2008.

[2] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, and N. McKeown.
NOX: Towards an Operating System for Networks. ACM SIGCOMM
CCR, July 2008.

[3] Floodlight OpenFlow Controller. http://floodlight.openflowhub.org/.

[4] OpenWRT community. The OpenWRT Project Homepage, 2008.
http://openwrt.org/.

[5] J. Yi, A. Adnane, S. David, and B. Parrein, “Multipath optimized link
state routing for mobile ad hoc networks”, Ad Hoc Netw. (2010).

