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Motivation

• The amount and variety of data stored has grown much faster than existing file systems.

• Many applications keep their own metadata stores, e.g. iTunes, e-mail clients, etc. These systems:

– are application-specific

– add significant complexity

• It is often easier to search the web than the local file system

– Web search engines such as Google can take advantage of a rich hyperlink structure.

– Similar contextual data in the filesystem would enhance local file searches.

LiFS

• Incorporating rich metadata into the filesystem itself simplifies sharing between applications.

• Applications need only create metadata, not store it.

• LiFS (The Linking FileSystem) introduces the relational link as a unit of file metadata.

– Link files with 〈key , value〉 pairs expressing their relationship.

– Traditional directories are 0-byte files with outgoing links.
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 generate:
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A compiler dependency graph represented with relational links

Design

• Designed to use non-volatile memory for metadata storage

– Fast storage-class memories provide speed necessary for searching rich metadata structures

– Random access memories allow for simpler, efficient code

∗ Linked lists store objects rather than trying to lay out structures on a disk block

∗ A string table saves space and allows for easy string comparisons
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A set of attributes from a link or file

• Several new system calls have been introduced to manipulate relational links

System call Function
rellink Create a new relational link between files
rmlink Remove a relational link between files
setlinkattr Set attributes on an existing link between files
openlinkset Returns an identifier for a set of links from a source file
readlinkset Fills in standard directory entry structure with link name and attributes

for the next link in a set

Implementation

• LiFS was implemented through FUSE
(Filesystem in Userspace)

– Prototype LiFS without complexity
of in-kernel development

– Even with significant performance
overhead of FUSE, LiFS’ perfor-
mance is competitive with existing
kernelspace filesystems

client application user space daemon

Linux VFS

user space

kernel space

FUSE kernel module

Future Work

• In-kernel implementation of LiFS

– Allows for better comparison with existing filesystems

– Because FUSE is designed around existing POSIX interfaces, adding new functionality is difficult.

• Take advantage of relational links in file searches

– What kinds of new queries can users take advantage of?

– How should searching be presented to the user?

∗ Existing approaches often use directory components as search terms, e.g.
/search/owner:john/type:mp3/

• Can LiFS metadata be stored with other storage technologies?

– LiFS on disk

∗ Seek time of disk accesses makes searching link structures difficult

∗ A number of graph indexing solutions exist which might make LiFS on disk possible

– LiFS in flash

∗ Different flash technologies have different access properties

∗ Flash has a limited number of writes per block

∗ To change data, an entire block must be erased and rewritten

– LiFS implemented using extended attributes

∗ System would be backwards-compatible

∗ Standard xattr interface is inefficient

/home/adminguy /home/networkguy

/etc/hosts.allow

/home/userguy

mask:rw- mask:rw- mask:r--

An ACL implemented using relational links

• Many different paths can exist to a single file

• Allowing path to modify file access is a powerful tool

– Security

∗ Providing users links to files might replace complex ACLs

– Modifying file data

∗ Individual links might serve to compress/encrypt file data

∗ Files might be defined as an aggregation of linked files
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