Motivation

e The amount and variety of data stored has grown much faster than existing file systems.

e Many applications keep their own metadata stores, e.g. iTunes, e-mail clients, etc. These systems:
— are application-specific
— add significant complexity

e It is often easier to search the web than the local file system

— Web search engines such as Google can take advantage of a rich hyperlink structure.
— Similar contextual data in the filesystem would enhance local file searches.

Storage Systems Research Center

Computer Science Department
University of California, Santa Cruz

Design

Future Work

e Designed to use non-volatile memory for metadata storage

— Fast storage-class memories provide speed necessary for searching rich metadata structures
— Random access memories allow for simpler, efficient code

x Linked lists store objects rather than trying to lay out structures on a disk block
x A string table saves space and allows for easy string comparisons

LiFS

e Incorporating rich metadata into the filesystem itself simplifies sharing between applications.
e Applications need only create metadata, not store it.
e LiFS (The Linking FileSystem) introduces the relational link as a unit of file metadata.

— Link files with (key, value) pairs expressing their relationship.
— Traditional directories are 0-byte files with outgoing links.

depends:objects

A

interface.o util.o

depends:objects

generate: generate:
gcc —C $sourcess gcc —C $sourcess

\

depends : sources

depends : sources

depends: 1includes depends: Includes

depends:includes

A compiler dependency graph represented with relational links

anode >1 anode O
key key —

value _Y_ value

A set of attributes from a link or file

e In-kernel implementation of LiFS

— Allows for better comparison with existing filesystems
— Because FUSE is designed around existing POSIX interfaces, adding new functionality is difficult.

e Take advantage of relational links in file searches

— What kinds of new queries can users take advantage of?
— How should searching be presented to the user?

x Existing approaches often use directory components as search terms, e.g.
/search/owner: john/type:mp3/

e Can LiFS metadata be stored with other storage technologies?
— LiFS on disk

x Seek time of disk accesses makes searching link structures difficult
« A number of graph indexing solutions exist which might make LiFS on disk possible

— LiFS in flash

x Different flash technologies have different access properties

* Flash has a limited number of writes per block

x To change data, an entire block must be erased and rewritten
— LiFS implemented using extended attributes

x System would be backwards-compatible

* Standard xattr interface is inefficient

e Several new system calls have been introduced to manipulate relational links

System call | Function

rellink Create a new relational link between files

rmlink Remove a relational link between files

setlinkattr | Set attributes on an existing link between files

openlinkset | Returns an identifier for a set of links from a source file

readlinkset |Fills in standard directory entry structure with link name and attributes
for the next link in a set

Implementation

user space

e)

o I_IFS was implemented through FUSE E client application user space daemon i
(Filesystem in Userspace) :

— Prototype LiFS without complexity
of in-kernel development

— Even with significant performance
overhead of FUSE, LiFS’ perfor-
mance is competitive with existing
kernelspace filesystems

1
Linux VFS FUSE kernel module s

kernel space

/etc/hosts.allow

mask :rw— mask : Tw— mask:r—

e e

An ACL implemented using relational links

e Many different paths can exist to a single file
e Allowing path to modify file access is a powerful tool

— Security
* Providing users links to files might replace complex ACLs
— Modifying file data
* Individual links might serve to compress/encrypt file data
* Files might be defined as an aggregation of linked files

