
Visualization in Power and Energy in Real-Time

Timothy Pace

University of California, Santa Cruz

Santa Cruz, CA, USA

tmpace@ucsc.edu

Bryan Smith

University of California, Santa Cruz

Santa Cruz, CA, USA

brabsmit@ucsc.edu

Abstract— New technology finding its way into the home has

opened up a gateway to collect power statistics and other

information in a fast and efficient way. To keep up with demand

from consumers, some electric companies provide primitive

visualizations of their power usage and quality of power. A

problem arises from hosting all this data on a centralized network,

introducing problems such as low sample rates and extremely high

latency. Under the guidance of Professor Patrick Mantey, Bryan

Smith and Timothy Pace worked with graduate student Paul Naud

to develop a system that provides real time voltage monitoring

using existing sensors found on APC’s UPS (Uninterruptible

Power Supply). The system was developed with two goals in mind:

scalability and efficiency. A Raspberry Pi was employed to store

the data and host the website, and the WebSocket protocol was

used by the client to facilitate the live content.

I. INTRODUCTION

The project began with a simple goal in mind: use the

existing sensors on board the UPS as a means for providing

power statistics. The UPS itself provided minimal power

statistics through software called PowerChute. In order for

PowerChute to collect data from the UPS and provide statistics

on thing such as blackouts, under voltages or over voltages, it

must be connected to a PC running the PowerChute software

via USB. Keeping a PC running to collect power statistics is

not very practical. In order to record blackouts the PC must

remain on always. Our idea was to use a device that would be

cheap, but would still be able to collect data and provide useful

statistics. The solution we came up with was to use a Raspberry

Pi, a cheap development board capable of running a full Linux

OS. We used the Raspberry Pi to run daemon software written

in Python to collect data by polling for statistics over the USB

connection. The Pi then stored this data into a database and

provided a simple easy-to-use web interface to visualize the

data and provide more useful statistics on the data.

A. Setting up the Pi

In order for the Raspberry Pi to be prepared upon boot for

interfacing with the UPS, we first wrote a configuration file for

the network interface.

 This allows the Pi to connect to a predefined wireless

network. In addition, we wrote an init.d bash script to start our

Python script as a daemon. Init.d scripts are a specially

formatted bash script that allows the system to boot up and start

daemons in a particular order so that runtime dependencies are

met in the correct order. This ensures that if the Pi doesn’t last

on the UPS’s battery, it will still boot up correctly and be ready

to go when plugged back in.

II. DATA COLLECTION DAEMON

Our data collection daemon was written in Python. The

daemon collected data from the UPS by polling for data over

the USB connection. Any changes in data are reported to any

clients connected to the daemon via a WebSocket, and data

changes are stored into a MySQL database. Users can then use

the data collected here in conjunction with the front-end website

to visualize the data.

A. pyUSB

Python provided a simple and easy to use USB library called

pyUSB. This allowed us to make Control Transfer requests

over the USB connection to the UPS to request different types

of data. Control transfers are typically used for command and

status operations. They are essential to set up a USB device with

all enumeration functions being performed using control

transfers. [1] In order to figure out the format for the control

transfer requests to the UPS, we used a USB packet sniffer

called USBlyzer. We ran USBlyzer in parallel with

PowerChute so that we could see what types of requests

PowerChute was making. Using this method we were able to

determine several different control transfer opcodes used in

requesting data form the UPS. Figure 1 shows the different

opcodes we discovered and used in our daemon.

TABLE I

CONTROL TRANSFER OPCODES

x06 Request a Boolean indicating whether the battery

is charging.

x22 Request the percentage that the battery is

charged.

x23 Request how much run time is left on the battery

in seconds.

x31 Request the current in

x50 Request the total load on the UPS.

B. Data Collection

The data collection portion of the daemon is run in a separate

thread from the rest of the program. This thread is responsible

for the polling mentioned above. While polling, this thread

keeps track of the current and past levels of data and makes note

of changes by updating clients that are connected to the

WebSocket, and storing the changes into a MySQL database.

This allows us to prevent recording redundant data by only

recording changes in data. In order to record special events

such as blackouts, under voltages, and over voltages, this thread

also takes note of how long the voltage stays at a certain level

and records the appropriate information. Unfortunately, the

sensors on the UPS only allowed for a maximum sample rate of

6Hz, or once every 150ms. Because of this bottleneck, the data

collection had a maximum resolution of 6 power cycles.

C. Database

To store our data, we used a MySQL database with a couple

different tables. Each table kept track of a different statistic

collected from the UPS. This allowed us to store data quickly

and efficiently and not have to worry about data management.

To keep storage needs low, we used the method discussed

above in which we only stored changes in data. Additionally,

since our collection rate was around 6 Hz, we could not use

simple UNIX timestamps to record the data. Instead we used a

UNIX timestamp with millisecond resolution.

III. WEB SERVER AND CLIENT

In addition to collecting data, our Raspberry Pi doubled as a

web server “backend” for data visualization. A combination of

JavaScript and CSS interfaced with the server for the client to

make up the “frontend.” This pair provided the structure for

real-time visualization of data from any array of sensors

provided. In order to facilitate live content, the WebSocket

protocol was used in our system. Given the multitude of data

that is recorded, the server and client must work together to

create a fast and easy way to reference the data in a readable

way. For data visualization, amCharts was used for its high

responsiveness and wide user base.

A. WebSocket

“The WebSocket Protocol enables two-way communication

between a client running untrusted code in a controlled

environment to a remote host that has opted-in to

communications from that code.”[2] The WebSocket protocol

was chosen instead of POST requests because of how frequent

a user can request a new sample point from the system.

WebSocket is a layer of abstraction on top of the TCP protocol,

allowing for a single connection for traffic in both directions. A

WebSocket connection is opened with a handshake that secures

the connection between client and server. After the handshake,

data can be transmitted using an arrangement of frames. Figure

[1] illustrates the outline of a frame. The frames are set up to be

sent in succession, with a capping frame at the end. An opcode

field denotes the type of message the frame contains, a payload

length is specified, and the payload itself is enclosed.

Communication from client to server required bit masking,

specified by bit eight of the frame. When masked, a frame

required the masking key needed for unmasking.

FIGURE 1

WEBSOCKET DATA FRAME

B. Server Backend

In constructing the website for data visualization, we

experimented with different types of web hosting. Initially,

Drupal was considered as the backbone for the webpage, but

ultimately was thrown out due to performance issues on the Pi.

In the end, just Apache was installed and the website was put

together entirely by hand. When a client connects, the initial

payload of data contains battery percentage,

charging/discharging, percent load, and current voltage. After

this initial payload, the server is set up to send only when a) an

event changes (change in voltage, battery percentage, etc…) or

b) information is requested from the client. In this way, the

client receives just as much information as necessary.

C. Client Frontend

Using JavaScript, the client can take full control as to what

is being displayed from the database. Since the backend is set

up to take flexible requests, the client can specify refresh rate

for real time, or select a custom date range to view statically.

Because of the premise of the data, it was necessary to set up

an easy way to view past “events” on the graph. Blackouts,

undervoltages, and overvoltages are all parsed into separate

tables and each event is a link to a specific time range when the

event took place.

D. amCharts

The graphing library for real time visualization had to be

responsive enough to support updating at a rate equivalent to

150ms. Highcharst was considered, however this library had

difficulty keeping up with the high refresh rate required by our

system. amCharts was then selected based on it meeting our

criteria and having a wide user base. amCharts accepts data in

the form of a tuple, and x and y coordinate. For real time, and x

and y coordinate is fed at the rate specified by the user and the

chart is redrawn. When loading a range of data, all points are

loaded simultaneously and the chart is drawn once.

ACKNOWLEDGMENT

- Paul Naud, for his assistance in related questions

REFERENCES

[1] Peacock, Craig. "Endpoint Types." USB in a NutShell.

Beyondlogic, n.d. Web. 14 Sept. 2

[2] I. Fette and A. Barth. The WebSocket protocol. Internet-Draft
draft-abarth-thewebsocketprotocol-01, Internet Engineering Task

Force, Jan. 2011. Work in progress.

