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 Abstract - the main drive behind this 

project is to design an easy to use, open 

source, CAD tool capable of providing 

multiple levels of abstraction for system 

designers and memory researchers alike. 

Most tools within the industry require 

expensive licenses and are unlikely to give the 

designer access to the lower level details of a 

particular memory that is being used. With 

this compiler it is possible to have a 

community maintained tool that is readily 

available to those who wish to use it. This tool 

will offer fast front end testing for those users 

who wish to stay clear of layout details, as 

well as back- annotated simulation with the 

extracted parasitics. At the 

moment the compiler is configured to layout 

an array using the start 6 transistor SRAM, 

but it can easily configured to layout 8 

transistor, 10 transistor, or any other desired 

bit cell. The compiler will also offer options 

such as reliability through redundancy and 

automated timing analysis. The end product 

is a highly tuned memory model that will 

reflect the behavior of the fabricated memory. 

I. Introduction 
  When designing a memory array, there 

is an abundance of symmetry that can be applied 

to the construction of it. If you look at the array 

itself, it is merely the same bit cell tiled 

thousands of time to construct the desired size 

and word size. The peripheral hardware is 

identical in almost any size variation of the 

memory; each array needs an address decoder, 

precharge unit, Column mux, Write Driver, 

Differential Sensing Amplifier, and an Output 

Latch. Excluding the column mux and address 

decoder, the designs of these devices are 

identical for any size of SRAM. The actual 

number of devices is dependent on the number 

of bits to a word.  

 Since each particular SRAM can follow 

a general skeleton, it would make sense to 

automate the process of actually laying out each 

individual cell that makes up the entire SRAM. 

This is where the SRAM Compiler comes in, the 

compiler can layout an entire SRAM array just 

given the word size and total size in bits.  

  A majority of the work being done this 

summer is the verification of the SRAM after it 

has been constructed by the compiler. One of the 

largest problems being Layout Vs Schematic 

checking. In addition to this, it is necessary to 

acquire timing statistics of each individual 

SRAM to makes sure that it behaves like it is 

intended to.  

II. 6-transistor SRAM 
 Figure 1 below shows the general form 

of the standard 6-transistor SRAM. The core of 

the cell can be thought of as two inverters in 

series as shown in figure 2. The logical ‘1’ or ‘0’ 

is stored within the feedback loop in devices M1-

4. Devices M5 and M6 are used to access the cell 

during write and read cycles, if the bit is not 

desired by the uses, the nmos devices are turned 

off, isolating the cell from the rest of the array. 

  

 
Figure 2: cross-coupled inverts 

Figure 1: 6-transistor SRAM cell 
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A. Write Cycle 
 The write cycle for a 6 transistor cell 

is built into the cell to begin with. To ensure 

a proper write, the transistors must be sized 

in such a way that the PMOS devices can be 

overpowered to right a '0' to the cell. To 

write a '1' to the cell, the bit lines must first 

be driven with the proper values, in this case 

BL=1 and BLB=0. Next the world line must 

be asserted which enables the access 

transistors M5 and M6. 

B. Read Cycle 
 The read cycle for a 6 transistor cell 

is started by pre-charging your bit lines to 

either VDD of VDD/2 depending on how 

you designed your sensing amp. Now your 

bit lines charged, the word line is asserted. 

With the access transistors activated, the bit 

either discharges the cell or holds at VDD 

(VDD/2) depending on the value of the cell. 

At the bottom of the array, this difference is 

sensed and amplified to the rails. The sense 

amp is where the output is changed to single 

ended. 

III. Layout vs. Schematic Checking 
 Figure 3 represents a schematic from 

virtuoso, Cadence CAD tool, of the standard 6 

transistor SRAM cell. Layout vs. Schematic 

checking compares these two figures and 

determines if the two are electrically equivalent; 

in other words, it makes sure that each transistor 

connected within the schematic, exists in the 

layout with identical connections. Looking at 

figure 4, you can notice a number of different 

colors; each color represents a different layer of 

material. The colors allow for a 3 dimensional 

design to be depicted on a 2 dimensional display. 

Table 1 gives a list of layers in figure 4. 

 

Color Material Layer 

Green n-doping 1 

Orange p-substrate 1 

Blue Metal 1 2 

Purple Metal 2 3 

Teal Metal 3 4 
Table 1: Layers in layout 

 

 
Figure 3: Schematic of 6-T cell 

 

 
Figure 4: Layout of 6-T Cell 

IV. Parasitic Extraction 
 After the design has been deemed 

LVS clean, it is now possible to extract 

parasitic resistances and capacitances from 

the materials in order to construct a better 

behavioral model. For any material, this 

unwanted resistance/capacitance is 

dependent on the dimensions of the material. 

If we assume that a particular metal has a 

sheet resistance of 25 mΩ per square and 

you have a sheet of metal with dimensions 

of 65 nano meters by .650 microns, the net 

resistance of this material would be 

approximately 250 mΩ because that sheet is 

made up of 10 65 nano meter squares in 

series. This is all assuming that the voltage 

is applied along the length of the sheet. 

Similar calculations can be made to find the 

net capacitance of the sheet.      
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V. Other Work 
 Besides the option to compile a 

standard SRAM array, work is being done to 

offer options such as redundant hardware to 

improve reliability. When fabricated 

integrated circuits, there exist a number of 

factors that can cause failure within a circuit. 

By introducing redundant hardware, it is 

increases the probability that the chip works 

after it has been manufactured. With the 

SRAM compiler, it will be possible to 

introduce redundant rows and columns when 

necessary. Additional features will include a 

tool for timing analysis. After the SRAM has 

been constructed, the tool can exercises the 

SRAM for functionality and timing 

constraints.  
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