
Peters 1

SRAM Compiler

Chasen Peters, Matthew Guthaus,
Marcelo Siero, Seokjoong Kim,
UCSC

 Abstract - the main drive behind this

project is to design an easy to use, open

source, CAD tool capable of providing

multiple levels of abstraction for system

designers and memory researchers alike.

Most tools within the industry require

expensive licenses and are unlikely to give the

designer access to the lower level details of a

particular memory that is being used. With

this compiler it is possible to have a

community maintained tool that is readily

available to those who wish to use it. This tool

will offer fast front end testing for those users

who wish to stay clear of layout details, as

well as back- annotated simulation with the

extracted parasitics. At the

moment the compiler is configured to layout

an array using the start 6 transistor SRAM,

but it can easily configured to layout 8

transistor, 10 transistor, or any other desired

bit cell. The compiler will also offer options

such as reliability through redundancy and

automated timing analysis. The end product

is a highly tuned memory model that will

reflect the behavior of the fabricated memory.

I. Introduction
 When designing a memory array, there

is an abundance of symmetry that can be applied

to the construction of it. If you look at the array

itself, it is merely the same bit cell tiled

thousands of time to construct the desired size

and word size. The peripheral hardware is

identical in almost any size variation of the

memory; each array needs an address decoder,

precharge unit, Column mux, Write Driver,

Differential Sensing Amplifier, and an Output

Latch. Excluding the column mux and address

decoder, the designs of these devices are

identical for any size of SRAM. The actual

number of devices is dependent on the number

of bits to a word.

 Since each particular SRAM can follow

a general skeleton, it would make sense to

automate the process of actually laying out each

individual cell that makes up the entire SRAM.

This is where the SRAM Compiler comes in, the

compiler can layout an entire SRAM array just

given the word size and total size in bits.

 A majority of the work being done this

summer is the verification of the SRAM after it

has been constructed by the compiler. One of the

largest problems being Layout Vs Schematic

checking. In addition to this, it is necessary to

acquire timing statistics of each individual

SRAM to makes sure that it behaves like it is

intended to.

II. 6-transistor SRAM
 Figure 1 below shows the general form

of the standard 6-transistor SRAM. The core of

the cell can be thought of as two inverters in

series as shown in figure 2. The logical ‘1’ or ‘0’

is stored within the feedback loop in devices M1-

4. Devices M5 and M6 are used to access the cell

during write and read cycles, if the bit is not

desired by the uses, the nmos devices are turned

off, isolating the cell from the rest of the array.

Figure 2: cross-coupled inverts

Figure 1: 6-transistor SRAM cell

Peters 2

A. Write Cycle
 The write cycle for a 6 transistor cell

is built into the cell to begin with. To ensure

a proper write, the transistors must be sized

in such a way that the PMOS devices can be

overpowered to right a '0' to the cell. To

write a '1' to the cell, the bit lines must first

be driven with the proper values, in this case

BL=1 and BLB=0. Next the world line must

be asserted which enables the access

transistors M5 and M6.

B. Read Cycle
 The read cycle for a 6 transistor cell

is started by pre-charging your bit lines to

either VDD of VDD/2 depending on how

you designed your sensing amp. Now your

bit lines charged, the word line is asserted.

With the access transistors activated, the bit

either discharges the cell or holds at VDD

(VDD/2) depending on the value of the cell.

At the bottom of the array, this difference is

sensed and amplified to the rails. The sense

amp is where the output is changed to single

ended.

III. Layout vs. Schematic Checking
 Figure 3 represents a schematic from

virtuoso, Cadence CAD tool, of the standard 6

transistor SRAM cell. Layout vs. Schematic

checking compares these two figures and

determines if the two are electrically equivalent;

in other words, it makes sure that each transistor

connected within the schematic, exists in the

layout with identical connections. Looking at

figure 4, you can notice a number of different

colors; each color represents a different layer of

material. The colors allow for a 3 dimensional

design to be depicted on a 2 dimensional display.

Table 1 gives a list of layers in figure 4.

Color Material Layer

Green n-doping 1

Orange p-substrate 1

Blue Metal 1 2

Purple Metal 2 3

Teal Metal 3 4
Table 1: Layers in layout

Figure 3: Schematic of 6-T cell

Figure 4: Layout of 6-T Cell

IV. Parasitic Extraction
 After the design has been deemed

LVS clean, it is now possible to extract

parasitic resistances and capacitances from

the materials in order to construct a better

behavioral model. For any material, this

unwanted resistance/capacitance is

dependent on the dimensions of the material.

If we assume that a particular metal has a

sheet resistance of 25 mΩ per square and

you have a sheet of metal with dimensions

of 65 nano meters by .650 microns, the net

resistance of this material would be

approximately 250 mΩ because that sheet is

made up of 10 65 nano meter squares in

series. This is all assuming that the voltage

is applied along the length of the sheet.

Similar calculations can be made to find the

net capacitance of the sheet.

Peters 3

V. Other Work
 Besides the option to compile a

standard SRAM array, work is being done to

offer options such as redundant hardware to

improve reliability. When fabricated

integrated circuits, there exist a number of

factors that can cause failure within a circuit.

By introducing redundant hardware, it is

increases the probability that the chip works

after it has been manufactured. With the

SRAM compiler, it will be possible to

introduce redundant rows and columns when

necessary. Additional features will include a

tool for timing analysis. After the SRAM has

been constructed, the tool can exercises the

SRAM for functionality and timing

constraints.

VI. Acknowledgments
 I would like to thank Matthew

Guthaus for giving me the opportunity to

work on this project, in addition to all the

guidance he and other members of the lab

provided. Thank you to the National Science

Foundation and SURF-IT for giving me the

funding necessary for me to work on this

project. And thanks to UCSC hosting the

whole event.

