Pyrope: A Nicer Jewel

A Comparison and Analysis of Hardware Description Language's

Rashad Kayed

4 N

Verilog

* One of the most common hardware
description languages is called Verilog.

» Verilog is similar to C language, and is a
low level hardware language.

* It is most commonly used when
designing and implementing digital
circuits at the register-transfer level.
Verilog is also important for analog
circuits and mixed signal circuits.

Pyrope

* Pyrope uses some Ruby language
aspects, so it was named Pyrope after
another similar gemstone.

* Pyrope creates a simpler language for
digital architecture by implementing
programming constructs. Pyrope’s
purpose is to maintain the functionality
of low level Verilog code, yet also
implement a highly expressive language
with abstraction capabilities.

Hardware Description Language

» A Hardware Description Language also known as a HDL, is a language used to
describe a digital system. A digital system is something like a microprocessor or a
flip flop switch.

Pipeline Structure

* One reason Pyrope was developed was to build the pipeline structure on its own.
A pipeline structure consists of combinational logic and registers to store the
results of that logic.

 Coding in Pyrope takes care of setting up this structure for you, so that the user
does not have to keep track of it.

» Ablock labeled stage in Pyrope code represents the diagram above.

Results & Improvements

» An example of one of the pros of Pyrope is global variable usage, which reduces
information programmers need to remember.

* After writing test cases of code using both Verilog and Pyrope it was discovered that
Pyrope uses about 25% less lines of code than Verilog, producing a neater and more
elegant overall program.

» Advantages of Pyrope include modern language constructs, global type inference,
reduction of boilerplate code, and cleaner and simpler programs.

-
Example

Implementation of a counter in Verilog:

module counter(en, clk, reset, amt, x);
input en, clk, reset;

input [3:0] amt;

output [7:0] x;

reg [7:0] x;

always @(posedge clk)
if(reset) begin
x = 0;
end else if(en) begin
X = X + amt;
end
endmodule

Implementation of a counter in Pyrope:

@Counter = 8h0
@Counter = @Counter + Amt if En

Counter_Out

Acknowledgements

Professor Jose Renau
Haven Skinner




