

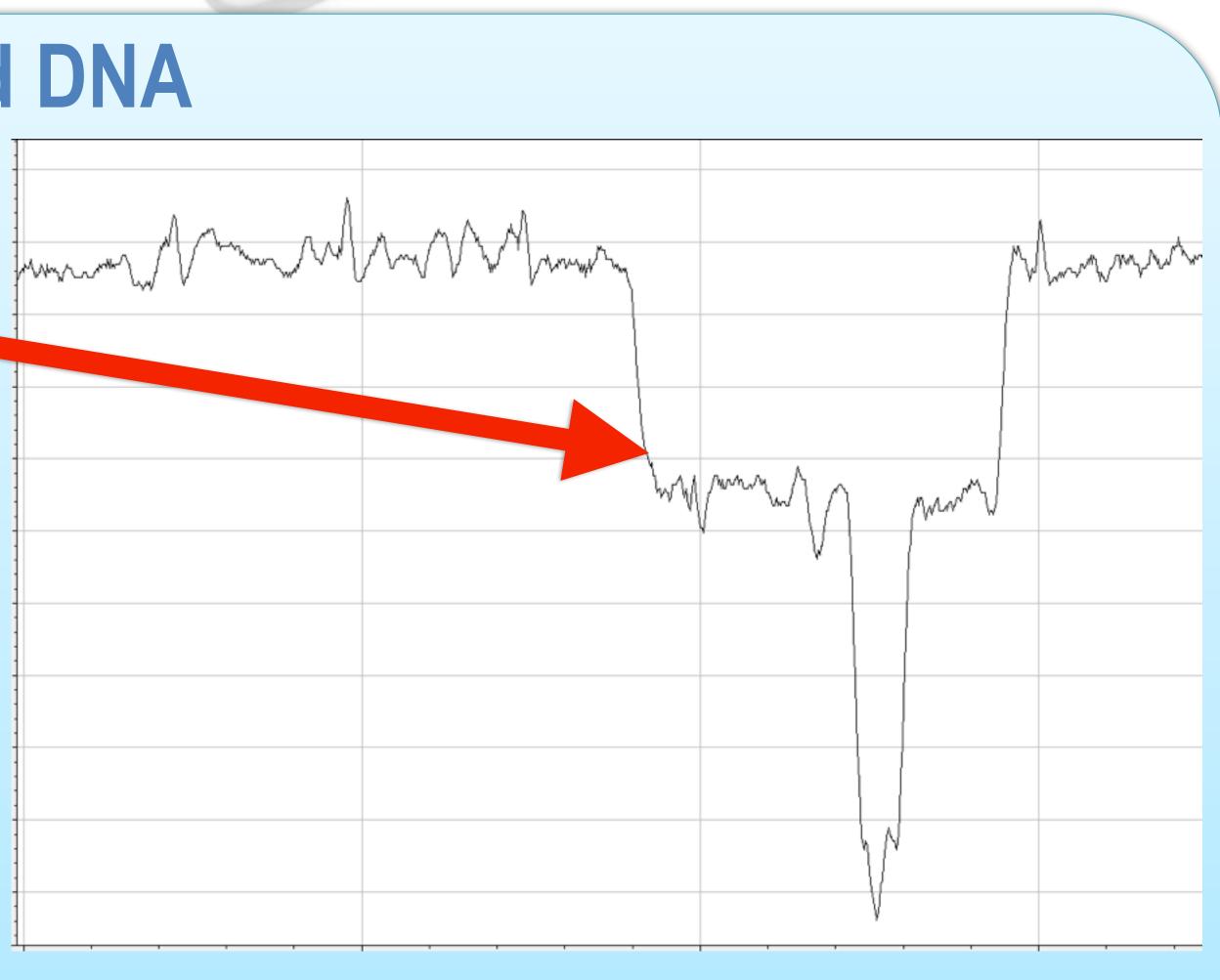
Saving the world one chip at a time

Many lives have been lost by catching cancers and diseases far too late

- Using solid-state nanopore technology we can help doctors diagnose patients by reading their genetic sequences
- Every experiment brings our research closer to a more efficient process and practical use
- By using voltage detection, we are able to read each nucleobase of DNA strands

By using our solid-state nanopore technology, the costs of these diagnosis will be fairly cheap and all doctors will require is a single drop of blood from their patients

Nanopores for DNA sensing


- Sequencing DNA for information is valuable
- It is very difficult to get exact DNA bases, but by using objects like protein it's easier to read DNA with higher voltage drops
- In a saline solution, running voltage connected with the membrane causes DNA translocation (DNA is negatively charged)
- When DNA is pulled through the pore, the current spikes down to a certain current level which allows us to read the DNA strand/

Ŧ		V	6		
	l.	.) day il day	ւտեմ	le, 141.	u. [1]
	مرامل ا	, ibidan	иП И ,	, ultı,	1.1
		R	E	50	C
		D			

tage detection of RecA coated DNA orded results with RecA coated send through the solid-state opore

• Each voltage drop shown detects a single DNA with RecA molecule in which we measure through current

Bubble Trouble

- 70% of the time spent with the chips is simply removing bubbles
- Our problems with bubbles will soon be alleviated by using a new voltage drilling method to create these precise nanopore holes inside the buffer solution

Moving Forward

- Learning from data analysis, our goal to eventually perfect these methods and experiments of reaching our final product becomes closer and closer
- We are looking in a different style of drilling chips which should eliminate our bubble trouble and directly lead us to collecting data with precise nanometer-sized holes in the nanopore

Acknowledgements

- Professor William Dunbar for this opportunity
- Christopher O'Donnell for training and guidance
- Noam Harel for partnership during research
- Members of SURF-IT
- Nation Science Foundation for funding this research internship

Contact Informatio

Erik Jung

Email: eajung@ucsc.edu

Phone: (510) 387 - 0194