

FSMCreator User’s Guide
by Ayla Solomon

Table of Contents

Introduction………………………………………………………..1

Interface details……………………………………………………2

Nitpicks and Problems…………………………………………….5

Supplements…………………………………………………….…6

Introduction

Finite State Machines

 The FSMCreator is used to build finite state machines, a logic construct that models the
behavior of an object or system; in this case, the nanopore system. Each state, of which there can
be few or many, represents the inputs to and outputs of the system under certain conditions. The
inputs to the FSM are voltage levels and triggers, based on the current, and state time. The
outputs are constant output voltage and ramp output voltage. When the user wants the FPGA to
switch state based on the inputs, that is a state transition.

Starting the Program

 To use this program, Java Runtime Environment 6/1.6 or later must be installed. (To
check, open the Command Prompt, found under Accessories, and type java –version and
then enter. If the version displayed is 1.6.0_01, you have the correct version.) If this version is
not installed, then an update is available for free at www.java.com.
 To open the program, double-click the FSMCreator.jar icon. This will automatically start
the program.
 The first thing displayed is a small dialog box that asks you to enter a name for the first
state. This can be any value, alphanumeric or symbolic. It is not length-constrained (to a point),
though for ease of use a shorter title is better. You don’t have to enter a title at the time;
continuing without entering a value will set the first state title to the default title State 0. States
are indexed starting at zero, regardless of what they are named.

Page 1

http://www.java.com/

Interface Details

State-Independent Values

 The state-independent values are located on the right side of the interface, under
Sampling Parameters and Trigger Controls. This pane is separate from the state tabs and will not
change or multiply when the states are modified in any way. Except the window step size field,
which is integer-only, these are decimal-only fields. Any non-number value entered into them
(excluding decimal points) will be cleared once the field is deselected. In the window step size
field, any decimal will be truncated to form an integer. The filtering alpha must be between 0 and
1 to save, though the value is not enforced during editing.

State Panes

 The tabbed pane on the left side of the interface is the state area. Each tab represents a
different state and everything bounded by the tab is state-specific, aside from the Write FSM
button. There are three main areas in the state pane: The state values, the transitions subpane, and
the state controls.

State Values

 The state values are the fields at the top of the state pane—ramp voltage output, constant
voltage output, and state time. Like the other components in the state pane, these are state-
specific. These fields, like the state-independent values, only hold only decimals.
 The note pane to the far right of the state pane can contain any keyboard character and is
designed to allow the user to annotate the state. Clearing it removes all notes and affects nothing
else.

State Controls

 The buttons at the bottom of the state pane are the state controls. Create State will add
another state to the tabbed pane and will pop up the same state title dialog box that was shown
when the program was opened. Once again, it is not required that anything be entered into the
field; a default title will be used in nothing is input.
 Deleting a state affects more than just the current state. It updates the state titles of states
appearing after the deleted state—the number in parentheses is the state number—to reflect the
new updated state number. All transitions to that state are removed and, if the deleted state was
the last state, the other states can no longer transition to it. Because this can constitute a major
setback if a state is accidentally deleted, it opens a dialog box to confirm that the user wants to
delete a state.

Page 2

 Clearing a state deletes all transitions, clears the state values, clears the notes box, and
resets the selector boxes for the state transitions. This only affects the currently selected state.
 Writing the FSM is not state-specific and does not affect the FSM. It will open a save
dialog and will save the FSM as a .txt file. The file is not meant to be read, but an example
annotated file is included for curious users in the Supplements section.

Transition Controls

 Transition controls include all of the multi-option selectable boxes, the list to their right,
and the transition buttons at the bottom right above the state controls. The first five multi-option
boxes, or comboboxes, contain the values True, False, and Don’t Care (default). The Go To State
box contains the state numbers of all states except the current state. When only one state is
present (such as when the program is first opened), this box is blank because there are no other
states. For this reason, no transition can be added at that time—an error box will pop up if an
attempt is made to do so. This box will also pop up if a state is deleted and then an attempt is
made to transition to it.
 The box at the right, initially blank, is the transitions list. It contains all transitions
currently added to the state. When a transition is added, is appears in the form MMMMM N,
where the M’s are values from the first five comboboxes (1 is true, 0 is false, X is don’t care) and
N is the state to which it transitions. Once a state is in the list, double-clicking on it will set all
comboboxes to reflect that transition.
 The clear transition buttons do as they say—clearing the last transition deletes the
transition on the bottom of the list and clearing the selected transition clears the transition
currently highlighted. If no transition is highlighted and that button is pushed, nothing happens.

The Menu Bar

 The File menu contains the predictable File items—New, Open, Save, Save As, and
Close, as well as Write FSM and Save Printable Version. New and Open close the current FSM
without saving and warn the user of that. Closing the FSM also pops up a dialog to make sure the
user wants to close.
 Save and Save As is different from Write FSM (which does the same thing as the button).
They save the FSM as a .fsm file, as opposed to .txt. These files, like the .fsm files, are meant to
be neither read nor edited by the user. The purpose of the save option is to allow a user to come
back to unfinished FSMs or to edit already complete ones to perform a different function. The
difference between Save and Save As is standard—if the file has already been created and Save
is selected, it saves to the same file without popping up a save dialog. Save As will pop up the
save dialog box every time and allow the user to save the same FSM under a different name.
 Opening an FSM is executed as it is in any other program; however, the program will
only open .fsm files. A .txt file will not show up on the list of openable files and therefore it is
impossible to open a file created by the Write FSM function.
 Saving a printable version creates a .txt file representing the FSM in a way that is easy to
read and understand. This file is recommended for documenting an FSM as it is the only really
readable format produced. An annotated example is included at the end in the Supplements
section.

Page 3

 The State menu contains state-specific controls, all of which are also present as buttons,
and so do the exact same things, except for the Change State Title control. Selecting this will pop
up a title-change box for the currently selected state. If nothing is entered or the Cancel button
selected, the state title will be set to default.

Page 4

Nitpicks and Problems

Saving and Writing FSMs

 There are some quirky things that the program does when it is asked to save. The largest
concern, or the most irritating if it isn’t known, is that if a field is edited (such as any state or
machine control boxes or the note pane) and remains selected when the FSM is saved or written,
that edit will not stick in the saved version. To avoid this, it is essential that the field is
deselected after editing, either by selected a different field or by changing states. Once it is
deselected, the program logs the change and it will be saved.

Keyboard Shortcuts

 There are keyboard shortcuts for all menubar items. If a user wishes to use one while
editing an FSM, either nothing or a state tab may be selected for it to work. The fist time a user
clicks a field or button, something becomes selected and after that point there is always
something selected, whether the user can see it or not.

Creating New States

 When a new state is created and the Go To State lists in all the states are updated,
sometimes the lists will go blank. This does not mean that no states can be transitioned to, it is
just an inexplicable bug. Dropping down the Go To State list and clicking the blank space will
revive the list and allow the user to select any state.

Page 5

Supplements

Annotated Save Printable Version file: Simple 3-state machine

Epsilon(v): 4

These are the machine
values.

Filtering Alpha(0<=a<1): 0.9
Window Step Size (samples): 2
Trigger Value (1): 25
Trigger Value (2): 0
Level Value (3): 0
Level Value (4): 0.0

################
##Use a high voltage to get a hairpin in the pore. When one is detected,
transition to Stall.
Capture (0) This is the 0th state. The hash

marks signal an annotation. If
no carriage return is used in the
notes pane, it will wrap and
may be harder to decipher.

State Time(ms): 0
Constant Output Voltage(mV): 180
Voltage Ramp(V/s): 0

Transitions:
When: Voltage Trigger 1 is true, go to state 1.

################
##Wait 10 ms to make sure the hairpin is secure. If it is not and leaves the
pore, go back to Capture.
Stall (1)
State Time(ms): 10.0
Constant Output Voltage(mV): 30
Voltage Ramp(V/s): 0.0

For the transitions, no ‘don’t
care’ value is included, only
the true or false values.

Transitions:
When: State Time Completion is true, go to state 2.
When: Voltage Trigger 1 is false, go to state 0.

################
##Once the hairpin is secure in the pore, ramp the voltage until is shears
and translocates through.
Ramp (2)
State Time(ms): 0
Constant Output Voltage(mV): 30
Voltage Ramp(V/s): 1

Transitions:
When: Voltage Trigger 1 is false, go to state 0.

Page 6

Annotated Write FSM file, for the curious

(Machine values. Same as seen in the GUI.)
4
0.9
2
25
0
0
0.0
(Number of states.)
3
(Transitions—Two to a number, which is a 16-bit decimal. There are 32 different possible
transitions (2^number of inputs) per state, though only a few are used.)
0
257
0
257
0
257
0
257
0
257
0
257
0
257
0
257
(Begin transitions for state 1.)
0
513
0
513
0
513
0
513
0
513
0
513
0
513
0
513
(Begin transitions for state 2.)
0
514
0
514
0
514
0

Page 7

514
0
514
0
514
0
514
0
514
(State values. These have been optimized to run on the FPGA.)
(Delay values for each state.)
0
1
0
(Delay multiplier for each state. The delay value and multiplier together form the FPGA-
optimized delay.)
0
1887
0
(Constant output voltage for each state.)
5898
983
983
(Ramp rate values for each state—the y-value of the ramp.)
0
0
189
(Step increment values for each state—the x-value of the ramp.)
0
0
1

Page 8

	Introduction
	Finite State Machines
	Starting the Program
	Interface Details

	State-Independent Values
	State Panes
	State Values
	State Controls
	Transition Controls
	The Menu Bar

	Nitpicks and Problems
	Saving and Writing FSMs
	Keyboard Shortcuts
	Creating New States
	Supplements

	Annotated Save Printable Version file: Simple 3-state machine
	Annotated Write FSM file, for the curious

