

Set up and Foundation of the Husky

Marisa Warner, Jeremy Gottlieb, Gabriel Elkaim
Worcester Polytechnic Institute

University of California, Santa Cruz

Abstract—Clearpath’s Husky A200 is an
unmanned ground vehicle that UCSC’s Autonomous
Systems Lab acquired to use as a vehicle base for
future projects. The purpose of this project is to
establish a foundation and documentation for the
Husky and set up the sensors on board the Husky. I
set up the Point Cloud Library to view the Kinect
and LiDAR video streams in Rviz. I then streamlined
a way to record and play back the data using a built-
in feature in ROS. I also set up how to visualize the
Husky in a simulator Gazebo and how to command
the Husky. In particular, I devised a system whereby
the same code could be copied from programs
running within Gazebo to those running onboard the
Husky. This will help streamline the development
cycle for control software for the Husky. (Abstract)

Keywords—Robotics; Point Cloud Library; Robot
Operating System (key words)

I. INTRODUCTION
The Autonomous Systems Lab (ASL) at UC

Santa Cruz has as its main focus creating low-cost,
scalable autonomous vehicles - aerial, ground and
water. The ASL obtained from Clearpath Robotics a
Husky A200 all-terrain autonomous ground vehicle.
The Husky will be used for future projects in the lab
such as route planning, terrain estimation, and obstacle
avoidance.

The Husky was shipped with multiple sensors,
such as Stereo Camera’s, Microsoft Kinect and the
Hokuyo LiDAR, already attached that needed to be
verified and calibrated to be able to work with the
required software such as the Robot Operating System
(ROS), Point Cloud Library (PCL) and Gazebo
simulator.

The purpose of this project was to create and
document a system to efficiently calibrate the sensors,
access and store sensor data for later use, and test code
that will operate on the Husky without it being

physically present. The documentation will later help
aid future projects by providing a code bank of snippets
of basic code to help in development of extensive
functions*.

II. ROBOT OPERATING SYSTEM

 Robot Operating System, know as ROS, is a
software framework system created by Stanford
Artificial Intelligence Laboratory known as Willow
Garage. The idea of ROS came from the concept of
Graph Archetiture. As describe in the *paper* ROS is
design to be modular; composed of nodes. Each node
has a way of communicating between each other through
topics composed of messages. Where there is node that
will ‘publish’ and ‘subscribe’ to other node and will
send data messages to another node. The main concepts
documented about ROS are nodes, message, topics, and
bags.

 As described before, Nodes are consider a software
module that communicate within each other like a
visualized graph. Nodes communicate with each other
by passing messages. A node sends specific messages to
another node by publishing related topic. If another
node needs that certain data, the node can subscribe to
that topic appropriate topic. There may be multiple
coexisting publishers and subscribers for one topic, and
a node can publish and subscribe to several topics.

 A topic is a piece of data that contains messages.
Each topic is associated with a certain input or output of
a sensor. For example, the topics associate with the
stereo camera’s are the live feed from each camera in
either compressed. Within the topic, is a message that
contains the feed’s information. Depending on the
frequency-publishing rate, a topic can publish a
thousand of messages per minute.

Another goal of this project was to find a way to
be able to record data from a topic and be able to replay
it back in place of the topic. A bag is a file format used
for recording and playing back ROS messages from
topics. A Bag file is an important mechanism for storing

data, such as sensor data, that can be difficult to collect
due to the volume at which messages are being
published.

III. POINT CLOUD LIBRARY
 The Point Cloud library is an open source
project that was developed for image and cloud
processing. A Point Cloud is a set of Data points that
compose a three dimensional image. The library
contains several features such as filtering, surface
reconstruction, and model fitting and segmentation.
With these features, the user can accurately recognized
an object or define a preset image for better recognition.
The Point Cloud Library was easily integrated within
ROS so that from the sensors, such as the Kinect, the
data could be view from a built in visualizer called Rviz.

A. Sensors
 The main sensors used on the Husky with the
Point Cloud Library are the Microsoft Kinect and the
Hokuyo LiDAR. The goal of these sensors is to get the
robot a informational depiction of the it’s surroundings.
The Kinect was set up front and centered of the robot to
get a maximum view of the of what could be in front of
the robot.
 One of the main sensors is the Microsoft Kinect.
Within the Kinect is a 3D depth Sensor and RBG
camera. Combining the two, with the Point Cloud
Library, it would produce a three-dimensional image
such in Figure 1. Within Rviz, there are multiple settings
which you can view the image. You can change the axis
setting that measures depth, along with the different
sizes of data points.

(Figure 1. The Point Cloud Library integrated with the Kinect. This is a

picture of a trashcan two feet away from the window. The Kinect camera is 5
feet away from the trashcan)

The other main sensor on the Husky is the

Hokuyo LiDAR. A LiDAR is a remote sensor that
measures ranges of variable distances of an environment

by analyzing the reflecting light of a laser. With this
data, it can generate a lot of elevations that form a point

cloud. With this Point Cloud and combine with the Point
Cloud Library, it can generate a three dimensional image

of its surroundings.

(Figure 2. A picture of the LiDAR scan of the hall way

containing the trash can.

With the LiDAR connected with ROS and the
Point Cloud Library, it was possibly to view the image
in Rviz. For example in Figure 2, it is an image of the
front perimeter of the husky. You can see the outline of
the walls of the Hall was the front outline of the trashcan
put in front of the Husky.

IV. GAZEBO
Gazebo is a multi-robot simulator used to

simulate outdoor environments. Gazebo is capable of
simulating multiple robots, sensors and object in a three
dimensional world. You can get realistic sensor
feedback while having generating physical interaction
with objects. The main part of this project was to be
able to create a clean transition between developing
code that can be used on the simulator and the final
code on the Husky platform. Within ROS, Clearpath
Robotics has set up launch files of the husky and certain
objects. For example, to go to the launch directory
where the launch files for the Clearpath Husky and
Husky environment you enter the command:

Cd opt/ros/fuerte/stacks/husky_simulator/husky_gazebo/launch

In figure # is an example what will come up when these
launch files are ran.

(Figure 3. The Gazebo version Clearpath environment and Husky)

Also, within the husky_simulator stack, the user can
manually manipulate the simulated Husky through
initializing the teleop program. This program allows the
user to click and move the husky.

V. Simulation Code
One of the main goals that ASL wanted to

accomplish was be able to find a way to develop and test the
code for the husky with out needing to have the Husky
physically present. This would provide multiple projects to be
able to work on the Husky without being restrained by waiting
for the husky to be come available.

As explained before, Gazebo is a simulated
environment that allows the user to manipulate simulated
object to real life parameters. The user can control the Husky
in Gazebo through the manipulation of the Twist messages.
Twist messages are of type geometry_msgs. Geometry
messages are common geometry primitives such as points,
vectors, and poses. The geometry_msg/Twist can be
formatted by linear and angular inputs.
 The code i8n Appendix 1, is as snippet of how as
were able to move the Husky in a continuous square. A Node
was created to publish the Geometry Twist Messages to the
topic /cmd_Vel. The topic /cmd_Vel will then publish the
motors on the Husky to either turn right or left at a certain
angle.
 We took this code from the simulator and place it
directly onto the Husky’s hard drive to the node auto_drive.
Auto_drive.py is a node that allows the user to switch between
autonomous mode and teleop mode by pressing the deadman
switch. Once autonomous mode is initiated it will run through
the sequence of the husky driving in a square.

VI. Acknowledgment
I would like to acknowledge the Summer Undergraduate

Research Fellowship program at University of
California, Santa Cruz and the Autonomous System Lab

for allowing me to participate in this program.

REFERENCES

Appendix of Code

#!/usr/bin/env	 python	
	
"""	 Example	 code	 of	 how	 to	 move	 a	 robot	 around	 the	 shape	 of	 a	 square.	 """	
	
#	 We	 always	 import	 roslib,	 and	 load	 the	 manifest	 to	 handle	 dependencies	
import	 roslib;	 roslib.load_manifest('mini_max_tutorials')	
import	 rospy	
#	 recall:	 robots	 generally	 take	 base	 movement	 commands	 on	 a	 topic	 	
#	 	 called	 "cmd_vel"	 using	 a	 message	 type	 "geometry_msgs/Twist"	 from	 geometry_msgs.msg	
	 import	 Twist	
	
class	 square:	
	 	 	 	 """	 This	 example	 is	 in	 the	 form	 of	 a	 class.	 """	
	
	 	 	 	 def	 __init__(self):	
	 	 	 	 	 	 	 	 """	 This	 is	 the	 constructor	 of	 our	 class.	 """	
	 	 	 	 	 	 	 	 #	 register	 this	 function	 to	 be	 called	 on	 shutdown	
	 	 	 	 	 	 	 	 rospy.on_shutdown(self.cleanup)	
	
	 	 	 	 	 	 	 	 #	 publish	 to	 cmd_vel	
	 	 	 	 	 	 	 	 self.pub	 =	 rospy.Publisher('cmd_vel',	 Twist)	
	 	 	 	 	 	 	 	 #	 give	 our	 node/publisher	 a	 bit	 of	 time	 to	 connect	
	 	 	 	 	 	 	 	 rospy.sleep(1)	
	
	 	 	 	 	 	 	 	 #	 use	 a	 rate	 to	 make	 sure	 the	 bot	 keeps	 moving	
	 	 	 	 	 	 	 	 r	 =	 rospy.Rate(5.0)	
	
	 	 	 	 	 	 	 	 #	 go	 forever!	
	 	 	 	 	 	 	 	 while	 not	 rospy.is_shutdown():	
	 	 	 	 	 	 	 	 	 	 	 	 #	 create	 a	 Twist	 message,	 fill	 it	 in	 to	 drive	 forward	
	 	 	 	 	 	 	 	 	 	 	 	 twist	 =	 Twist()	
	 	 	 	 	 	 	 	 	 	 	 	 twist.linear.x	 =	 0.15	
	 	 	 	 	 	 	 	 	 	 	 	 for	 i	 in	 range(10):	 	 	 	 	 	 	 	 	 #	 10*5hz	 =	 2sec	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 self.pub.publish(twist)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 r.sleep()	
	 	 	 	 	 	 	 	 	 	 	 	 #	 create	 a	 twist	 message,	 fill	 it	 in	 to	 turn	
	 	 	 	 	 	 	 	 	 	 	 	 twist	 =	 Twist()	
	 	 	 	 	 	 	 	 	 	 	 	 twist.angular.z	 =	 1.57/2	 	 	 	 #	 45	 deg/s	 *	 2sec	 =	 90	 degrees	
	 	 	 	 	 	 	 	 	 	 	 	 for	 i	 in	 range(10):	 	 	 	 	 	 	 	 	 #	 10*5hz	 =	 2sec	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 self.pub.publish(twist)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 r.sleep()	
	
	 	 	 	 def	 cleanup(self):	
	 	 	 	 	 	 	 	 #	 stop	 the	 robot!	
	 	 	 	 	 	 	 	 twist	 =	 Twist()	
	 	 	 	 	 	 	 	 self.pub.publish(twist)	

	
if	 __name__=="__main__":	
	 	 	 	 rospy.init_node('square')	
square()	

