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Sharing Trees

Clients writing to clients create a hierarchy of client caches, shown below. Clusters of 1000s of clients have frequent client failures, thus
In-flight data management must:
discover client fallures
rebuild sharing trees without failed client
recover maximum in-flight data
storage operations continue normally after recover

Problem

To handle petabytes of data and billions files ranging from bytesto terabytes : —
in size, storage systems (like Ceph*) may use object based storage. Read must wait until Client 1 closes and

Object Based Storage: transmits A back to OSD -> long walit
e separates metadata and data on different machines
* dataisstored on Object Storage Devices (OSDs) Datathat is“in-flight” isbeing modified by a

e metadatais stored on Metadata Servers : . :
« filesdivided into objects and striped on several OSDs (?“ent’ likefi IeA,. and has very slow access
times for other clients.

* Ceph is an object based storage system being developed by SSRC

client that receives lock directly from OSD is authority for
that region and is root of sharing tree

. clients with areadwrite cache store entire tree below itself
SOI Utl On and path to root

_ all writeslazily replicated up tree to root
Most recent datais always

non-root client failure
Immediately available from e root redirects around failed client
Client 1

« |ittle or no dataloss due to lazy writes up tree

root client failure

« OSD rebuilds sharing tree by finding the 2™ tier clients
e some dataloss expected

reduces traffic at OSD except for root client failure

Solution Requirements

 locking by file region « |ast write immediately seen by all clients
object based storage system  reduced latency for opening in-flight regions
fastest network in cluster is between clients e scaable
client caches file when opened as read only or readwrite « minimal dataloss due to client failures

Initial State: | Client 1 hasregion A opened for readwrite. Initial State: | Client 1 hasregion A opened for readwrite.
Action: Client 2 opensregion B for readwrite. Bc A Client 2 has region B opened for readwrite. BCA.
Action: \ Client 3 opensregion C for read. C overlaps A and B

communication after initial metadata query communication after initial metadata query

Client 2 Client 1 Client 3 Client 2 Client 1

In-Fight Data Design Space

We have found the circled options to best fulfill the specified requirements.

Forwarding - options about when a request is forwarded to a client

Which requests? < read only — < read/write —

Forward to which client caches? read only < read/write —

Maximum sharing tree height? finite constant < infinite —

When? transmission only < opentoclose —

Coherence - options pertaining to coherence of caches

Local caches updated? _yes o no

Updated how? Invalidate with update every write : : : : - _ _ _ _ _

callbacks Final State:  Client 2 hasregion B inlocal cachetor writing. Final State: | Client 3 has region Cinlocal cache for reading.

ch b her ol ents after? T TP Client 1 cannot make changes to region B. Client Client 3 will be notified of any changesto region C.

anges available to other clients after” < write to local cache — Ile close 1 will be notified of any changesto region B.

Future Work

e establish how file size, last modified and last accessed are handled

e Only 1 client has true write capabilities for aregion at atime. * Investigate other algorithms for recovery after client failure
If client 2 opens region A for readwrite and obtains the region from client 1 then client 1 cannot modify region A until client 2 has closed A. o Implement in Ceph and benchmark




