In-Flight Data M anagement for Distributed Storage Systems

Kendrick Boyd Carlos Maltzahn _
boydk@lawrence.edu carlosm@soe.ucsc.edu Thiswork was completed as part of UCSC's SURF-IT summer

undergraduate research program, an NSD CISE REU Site. This
Storage Systems Research Center (SSRC) at UCSC material is based upon work supported by the National Science

Foundation under Grant No. CCF-0552688.

Sharing Trees

Clients writing to clients create a hierarchy of client caches, shown below. Clusters of 1000s of clients have frequent client failures, thus
In-flight data management must:
discover client fallures
rebuild sharing trees without failed client
recover maximum in-flight data
storage operations continue normally after recover

Problem

To handle petabytes of data and billions files ranging from bytesto terabytes : —
in size, storage systems (like Ceph*) may use object based storage. Read must wait until Client 1 closes and

Object Based Storage: transmits A back to OSD -> long walit
e separates metadata and data on different machines
* dataisstored on Object Storage Devices (OSDs) Datathat is“in-flight” isbeing modified by a

e metadatais stored on Metadata Servers : . :
« filesdivided into objects and striped on several OSDs (?“ent’ likefi IeA,. and has very slow access
times for other clients.

* Ceph is an object based storage system being developed by SSRC

client that receives lock directly from OSD is authority for
that region and is root of sharing tree

. clients with areadwrite cache store entire tree below itself
SOI Utl On and path to root

_ all writeslazily replicated up tree to root
Most recent datais always

non-root client failure
Immediately available from e root redirects around failed client
Client 1

« |ittle or no dataloss due to lazy writes up tree

root client failure

« OSD rebuilds sharing tree by finding the 2™ tier clients
e some dataloss expected

reduces traffic at OSD except for root client failure

Solution Requirements

 locking by file region « |ast write immediately seen by all clients
object based storage system reduced latency for opening in-flight regions
fastest network in cluster is between clients e scaable
client caches file when opened as read only or readwrite « minimal dataloss due to client failures

Initial State: | Client 1 hasregion A opened for readwrite. Initial State: | Client 1 hasregion A opened for readwrite.
Action: Client 2 opensregion B for readwrite. Bc A Client 2 has region B opened for readwrite. BCA.
Action: \ Client 3 opensregion C for read. C overlaps A and B

communication after initial metadata query communication after initial metadata query

Client 2 Client 1 Client 3 Client 2 Client 1

In-Fight Data Design Space

We have found the circled options to best fulfill the specified requirements.

Forwarding - options about when a request is forwarded to a client

Which requests? < read only — < read/write —

Forward to which client caches? read only < read/write —

Maximum sharing tree height? finite constant < infinite —

When? transmission only < opentoclose —

Coherence - options pertaining to coherence of caches

Local caches updated? _yes o no

Updated how? Invalidate with update every write : : : : - _ _ _ _ _

callbacks Final State: Client 2 hasregion B inlocal cachetor writing. Final State: | Client 3 has region Cinlocal cache for reading.

ch b her ol ents after? T TP Client 1 cannot make changes to region B. Client Client 3 will be notified of any changesto region C.

anges available to other clients after” < write to local cache — Ile close 1 will be notified of any changesto region B.

Future Work

e establish how file size, last modified and last accessed are handled

e Only 1 client has true write capabilities for aregion at atime. * Investigate other algorithms for recovery after client failure
If client 2 opens region A for readwrite and obtains the region from client 1 then client 1 cannot modify region A until client 2 has closed A. o Implement in Ceph and benchmark

