
In-Flight Data Management for Distributed Storage Systems

Kendrick Boyd Carlos Maltzahn

University of California, Santa Cruz

Storage Systems Research Center

boydk@lawrence.edu carlosm@soe.ucsc.edu

September 8, 2006

Abstract

Distributed storage systems suffer performance loss
due to increased file access latency when multiple
clients share the same file. This is especially not-
icable with extremely large files which take a long
time to transmit between server and client. To in-
crease performance for true and false file sharing we
propose in-flight data management: an extension to
standard distributed storage where a client’s local
cache is made available for reading and writing by
other clients.

1 Introduction

High performance clusters used for massive simu-
lations often require enormous amounts of storage
space that must be available to thousands of clients
with minimal file access latency. To provide a large-
scale distributed storage system capable of servicing
high performance clusters the Storage Systems Re-
search Center (SSRC) at the University of California
Santa Cruz (UCSC) is developing Ceph. The ulti-
mate goal is that Ceph will provide multipe petabytes
of storage with billions of files ranging from bytes
to terabytes in size and accessible by thousands of
clients [3].

Ceph relies on several key ideas to provide such
capabilities. The first is the separation of metadata
and data. Metadata is stored on a small cluster of
machines that are solely devoted to metadata. These

metadata servers handle all client requests for meta-
data allowing the data storage devices to only store
data and no metadata. The second idea is the use of
object based storage. Files are divided into objects
and objects becomes the primary structure which is
handled by the storage system. Files are mapped to
objects using a universally known algorithm called
CRUSH which allows clients to automatically know
where a specific object is stored once the client has
contacted the metadata server and received informa-
tion regarding the file’s striping method. The ob-
jects are stored on Object Storage Devices (OSDs)
which include a processor and hard drive(s). Since
each OSD has a processor, it performs the overhead
of mapping the object onto memory blocks and al-
lows the client to only worry about the objects and
files. In addition, OSDs automatically back-up ob-
jects amongst themselves and monitor each other to
identify and recover from OSD failures without inter-
ruption in service [3].

Currently, Ceph (like most distributed storage sys-
tems) requires all data requests to be satisfied from
the OSDs. For many applications and situations this
causes no problems, however, when a client opens a
file for writing and then other clients want to read or
write that data, either clients must wait for the new
changes to be written to the OSD or they must work
with old data. For a terabyte sized file, the time to
transmit the changes back to the OSDs could create
an inordinate delay which vastly increases latency.
We refer to such data that is being edited by a client
and is thus cached locally at the client as ”in-flight

1



data”. When multiple clients want access to in-flight
data, performance immediately drops as clients must
wait to obtain write access or for the new data to be
available from the OSDs.

We believe that better management of in-flight
data will provide considerable performance increases,
especially for simulations where the ideal is to have
all clients read and write to the same data file. To ac-
complish this we propose that clients should be able
to read and even write data not only to the OSD but
also to other client’s caches. Adding this peer-to-peer
aspect to a distributed storage system should provide
a framework which can provide both a general perfor-
mance boost and customizable implementation vari-
ables for fine tuning the storage system to a specific
situation.

2 Overview

In this section we outline the design space for an
in-flight data management implementation. In all
further discussion of in-flight data management we
make a few assumptions about the system. First is
that locking granularity is by file region, so all open
requests must also include a byte offset from the be-
ginning of the file and a byte length or a signal that
the file is being opened for appending. After a spe-
cific region is opened, the associated file descriptor
can only access bytes of the file in that specific re-
gion or,if it was opened for append, add data to the
end of the file. The second assumption is that all
clients store a copy of the entire file region in a lo-
cal cache after opening a file. Both read only and
readwrite opens are cached and all subsequent read
or write requests use the local cache. Finally this dis-
cussion assumes an object based storage system and
is specifically geared toward implementing in-flight
data management in Ceph. However, the same con-
cept could be easily adapted for other distributed file
system paradigms.

During our investigation we identified several vari-
ables for precisely how in-flight data management
might be implemented. The variables we investi-
gated, discussed below, all pertain to one of 3 broad
categories within distributed storage systesms: for-

warding, coherence, or failure recovery.

2.1 Forwarding

Once we decide to make a client’s local cache avail-
able to other clients we have to determine precisely
when another client’s cache would be used. The first
variable is which types caches can be forwarded to
so that the data comes from that cache. The op-
tions are to send requests to clients with read only
caches, readwrite caches, or both. Sending requests
to read only caches only lessens the potential data
transfer load at the OSD while forwarding requests
to readwrite caches allows the latest write to be read
by another client without waiting for the region to be
transferred back to the OSD.

The next variable is which types of requests the
OSD may forward to clients. Once again the op-
tions are read only, readwrite, or both. Forwarding
read only requests to a client cache allows the latest
changes to be read if the cache is readwrite. If the
cache where the data is obtained is read only then
the only gain is that the OSD must transfer less data
since a client is providing the data. If readwrite re-
quests are forwarded then clients can share or trans-
fer locks with other clients. A dangerous situation
arises if readwrite requests can be forwarded to read
only caches since that would imply that the read only
cache could actually be modified by another client
and then those changes would need to be written to
the OSD by a client with a read only lock. Hence
readwrite requests should not be forwarded to a read
only cache.

The third variable for forwarding is when open re-
quests should be forwarded by the OSD. In general,
requests will be forwarded if some client has the file
region open already (as long as the already opened file
region is stored in a cache type that can be forwarded
to). However there are 2 options for precisely when
requests should be forwarded to a client’s cache. The
first option is to forward the request only while the
data is being written back to the OSD (only applies to
readwrite caches). So as a file is written back to the
OSD, the OSD would send any open requests (read
only) to the client that is writing data to the OSD so
that the read only open can be satisfied immediately

2



from the readwrite cache. At any other time, includ-
ing if a client had a file open and was modifying it
but had not yet closed the file, the data (but neces-
sarily the last write) would be available only from the
OSD. The second option is to forward all requests to
the client from the moment it opens the file until it
closes the file and finishes transmitting any changes
back to the OSD. This allows any modifications the
client might make to a readwrite cache to be immedi-
ately available to any other client since other clients
are obtaining the data directly from the client’s lo-
cal cache. This second option would have to be used
for any read only caches that are being forwarded to
since there are no modifications to write to the OSD
upon file close.

The last variable for forwarding requires some fur-
ther discussion about what occurs if a file is heavily
shared. As clients open file regions and obtain the
data and locks from another client a tree of depen-
dencies is created. We call this a sharing tree since it
shows the sharing that is occuring. The final variable
is then if any limits should be placed on the size of
this sharing tree. The first option is to simply let the
tree grow arbitrarily as the opens occur. By putting
no limits on the sharing tree it is possible for the
tree to become very complex with an extremely large
height. This could lead to difficulties, especially with
recovery after a client fails. So another option for the
sharing tree is to limit it in some way, most likely
by specifying a maximum height. Then any open re-
quests that would push the sharing tree over the limit
must wait until other clients close so the limit is not
crossed.

2.2 Coherence

After a client has obtained a copy of a file region from
another client’s cache, there are four variables asso-
ciated with coherence. The first variable is whether
the cached copy should be dynamic or static. A static
cache is never changed regardless of what modifica-
tions other clients might make to the file region that
is cached. A dynamic cache will reflect modifications
made by other clients. If a static cache is desired
then there are no other relevant variables for coher-
ence but if a dynamic cache, which will reflect the

latest changes to the data, is required then there are
two other variables.

The first of these variables specific to keeping an
updated dynamic cache is when changes should be
seen by another client. More specifically, if Client 1
has the file region opened for readwrite and Client
2 has the same region cached for read only, how fre-
quently should modifications that Client 1 makes be
transmitted to Client 2. The simplest option is that
Client 2 is only informed of changes once Client 1
closes the file region. Another option is for every
modification that Client 1 makes to be immediately
indicated to Client 2. A third option is for Client
2’s cache to be synchronized with Client 1 at specific
time intervals.

The final variable for coherence is how modifca-
tions are transmitted to a dynamic cache. [1] outlines
several such methods used in shared-memory multi-
processors, of which two are useful for this applica-
tion. Both of these methods assume that Client 1,
with the readwrite cache, has a list of all clients with
caches that overlap with its own readwrite cache.
In the first method, all other clients with overlap-
ping caches are updated every time the modifications
should be transmitted (on close, on write, or time
interval). So every time a modification is made by
Client 1 the changed data is transmitted to Client 2
and any other clients with a read only cache of the
changed data. Since the new data might never be
read before Client 2 closes the file region, another
method is to invalidate the modified region of the
cache. With invalidation, Client 1 only notifies Client
2 (and any other overlapping caches) that a small sec-
tion of the file has changed and thus Client 2’s cache
for that section is invalid. So the changed data is
not transmitted until Client 2 issues a read for the
invalidated region.

2.3 Failure Recovery

Distributed storage systems which use in-flight data
management are expected to be most prevalent in
large high performance clusters. With thousands of
clients, failures occur frequently so we need a mech-
anism to minimize the loss of in-flight data modifi-
cations and allow the rest of the cluster to continue

3



to function normally when a client fails. Here we
list some features that will facilitate recovering from
client failures.

One option is to lazily write modifications up to the
root of the sharing tree. This will leave the OSD free
of extra network traffic but still allow new changes to
be stored by multiple clients when a client is writing
to another client’s cache. There would then be a
system call to allow a selected file region to be flushed
to the OSD so that a client could guarantee that its
changes are now stored securely on the OSDs.

Another option is for the client to store some por-
tion of the sharing tree with the actual cached data.
Besides storing the entire sharing tree for the region,
a promising possiblity that we found is to store the
sharing tree below the current client and the path to
the root. This reduces the size of the tree that is
stored but still allows the tree to rebuilt even if the
root client crashes.

3 Related Work

In-flight data management brings together elements
from 3 different areas. The first are distributed stor-
age systems, such as Ceph (described in detail in [3]),
which we propose extending to allow reading and
writing to client’s buffered caches. [1] provides an
excellent overview of the second area which is coher-
ence mechanisms from shared-memory multiproces-
sors. Finally in-flight data uses a peer-to-peer con-
cept for client interactions by allowing clients to read
and write from other client caches in an unstructured
manner. [2] also brings together these ideas for an-
other method of implementing in-flight data manage-
ment in Ceph.

4 Chosen Design

After exploring the design space described in 2, we
chose some solution requirements for an in-flight data
management implementation in Ceph and selected
the options which would best fulfill those require-
ments. The requirements that we selected for this
design are: last write is seen by any subsequent read

by any client, reduced latency for opening file regions
that are in-flight, scalable, and minimal data loss due
to client failures.

4.1 Forwarding

We choose to only forward to readwrite caches but
to forward both read only and readwrite requests to
the readwrite cache. This allows clients to write to
another client’s cache and should always reduce la-
tency for opening in-flight data. We do not allow
requests to be forwarded to read only caches for two
reasons. First, it completely avoids the dangerous sit-
uation if a readwrite request is forwarded to a read
only cache. Second, forwarding read only is only use-
ful for reducing the load on the OSDs which is not
something upon which we are focused for this design
and it could be easily added if load-balancing is nec-
essary. Thus read only caches are always leaves in
the sharing tree. We only allow a readwrite request
to obtain a lock from a client if the entire region that
is being opened is contained in a single client’s read-
write cache. Further thought would need to inves-
tigate what extra problems, especially during failure
recovery, might arise if a client could obtain its read-
write cache from multiple clients. However, read only
caches may obtain data from any combination of mul-
tiple clients and OSDs. Note that at any moment
only one client may write to a specific file region so
that when a client 2 opens region A for readwrite
and obtains the lock from client 1, client 1 cannot
modify region A until client 2 closes. Since we allow
clients to write to other client caches and we require
the latest write to be read by all clients we will for-
ward requests to a cache from the moment the file
region is opened until the the data has been trans-
mitted back to the OSDs or another client after the
close system call. Finally, we allow the sharing to
grow arbitrarily deep. We expect a sharing tree will
very rarely have a height more than 3 or 4 in almost
all applications so the tree shouldn’t become too big
or complex. Additionally, if we specify a cutoff size
after which no more forwards are made, then a client
whose open would extend the tree beyond the cutoff
will have an enormous latency for the open as it waits
for the sharing tree to become small enough to allow

4



the open to occur without making the tree too tall.

4.2 Coherence

The coherence options were mostly dictated by the
solution requirement we made that all clients must
always read the last written data. Clearly if this is
to be true the cache must be dynamic and change
as other clients modify the file region. Also, since
the last write must always be read we cannot wait
for the client that modified the file to close it so
clients must be informed of the change after every
write call. Even the method of updating is partially
dictated since we cannot use a time interval update
because the clients need to be notified immediately
of any modifications. That leaves either updating au-
tomatically or invalidating regions and synchronizing
only when necessary. Since many changes made to
a file region won’t actually be read by a client with
that region cached we choose to use the invalidation
method. In addition, this should help make in-flight
data management more scalable since on every mod-
ification to its local cache, a client must only send
a small message to its list of overlapping caches and
not all of the changed data all at once. Thus, each
readwrite cache will also store a list of all clients with
a cache that intersects the readwrite region so that
the client with the readwrite cache can notify other
clients when parts of their cache are invalid. We don’t
expect that a read only cache needs to store where it
obtained the data, so all it must store is a list of the
invalid regions in the cache and, for convenience, an
identification of the client which invalidated that re-
gion. Then if the invalidated region is read the client
can first query the client which invalidated the region
for the updated information and if that clietn has al-
ready closed the cache then the update will start from
the OSD like an open call.

4.3 Failure Recovery

Here we outline one method for recovery after client
failure but it is just an idea at this point and needs
further investigation to clarify details and confirm it
is a feasible method. The first step for this recovery
method is to identify the root of the sharing tree as

the authority for this file region. Then, every read-
write cache will also store the sharing tree below it-
self and the path to the root (thus the root stores
the entire sharing tree). We then use a lazy write to
propagate any modifications to a client’s local cache
up the tree to the root, but not to secure storage on
OSD unless a specific flush call is issued. This allows
the root to rebuild the tree and redirect readwrite
caches to write their changes to the correct client’s
cache to rebuild the sharing tree around the failed
client (when the failed client is not the root of the
tree). When such a client fails, there should not be
any lost in-flight data because any modifications were
lazily written up the tree to the root. The problem
then becomes what to do when the root fails. In this
event, the rebuilding of the sharing tree becomes the
responsiblity of the OSD. To rebuild the tree the OSD
first needs to locate, probably using a broadcast mes-
sage, the subtrees that are still functioning below the
failed root. Then, using the paths to the failed root
which are stored with the readwrite caches, the OSD
can redirect the caches to rebiuld the sharing tree
into multiple trees with new roots. When the root
fails, some in-flight data will be lost if it was modi-
fied by the root or by a client which wrote its mod-
ifications to the root and then closed. We find that
since the data is ”in-flight” and still in local caches
such data loss is acceptable since if a client needs
to guarantee that a modification is securely stored a
flush command can be used. This recovery method
allows copies of modified data to usually be stored
on different clients without burdening the OSD with
more traffic except when a root client fails. Thus
this method should be scalable unless the root client
which is now the authority for the region gets too
much traffic.

5 Conclusion

Although we have not yet implemented any in-flight
data management in Ceph, we see the potential for
decreased file access latencies for many applications.
We think this will have the most impact on high per-
formance computing and believe it will make it eas-
ier for large simulations to write all data to a single

5



file with minimal performance degradation. The next
step for in-flight data management is to confirm and
quantify any performance gains in actual applications
and determine how the changing the design options
effects performance. Another important aspect that
must be investigated further is recovery from client
failures. We only looked at one method, outlined in
4.3, but it still needs work filling in details on the
algorithms and to insure that the recovery can be
performed in a timely manner while allowing the rest
of the cluster to continue normal operation. A third
aspect that must be determined is how metadata in-
formation such as last modified and file size is stored
and kept updated. Although there is still much work
to do on in-flight data management, it is a promising
addition to distributed storage systems which moves
the storage system one step closer to existing entirely
within the clients.

6 Acknowledgements

This work was completed as part of UCSC’s SURF-
IT summer undergraduate research program, an NSD
CISE REU Site. This material is based upon work
supported by the National Science Foundation under
Grant No. CCF-0552688.

References

[1] D. J. Lilja. Cache coherence in large-scale shared-
memory multiprocessors: Issues and comparisons.
ACM Computing Surveys, 25(3):303–338, Sept. 1993.

[2] A. Pozner and T. Kaldewey. In-flight data manage-
ment in large scale storage systems - crossing the
boundary towards peer to peer systems. Personal
communication.

[3] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E.
Long, and C. Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings
of the 7th Symposium on Operating Systems Design
and Implementation (OSDI), Seattle, WA, Nov. 2006.

6


