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1 Abstract

In an attempt for simplicty we approxiamte our nanopore setup as a RC network
and show the response of our model. By then looking at the response of our
amplifier circuitry we are able to acheive a model similar to that of our collected
data. We then proceed to view the differences between models of different
enzymes bound to ssDNA and unbound ssDNA and come to the conclusion
that only the resistance of the channel created by our pore changes for different
enzymes. From this observation we come to the conclusion that differences in
our transients are due primarily to the difference in type of enzyme bound to
ssDNA.

2 Introduction

Over the last decade, research in the use of nanometer scale pores to detect many
biological events has been heavily explored. This paper attempts to explain a
new technique for detecting different events of single-stranded DNA (ssDNA)
binding to enzymes.

3 Creating a Model

We begin by viewing the physical properties of our nanopore system and then
create the linear-network equivalent of the system.

3.1 Nanopore Setup and Physical Operation

Our nanaopore system is composed of a salt solution and some physical barriers
which resemble cirucit elements. Ion flow through the nanopore forms ionic
current which is believed to be proportional to the current data collected via
a voltage divider circuit as is explained later. Salt ions flow through the pore
which is inserted into a membrane. The ion flow is due to a voltage applied by



the user and causes charge to build up on the membrane like a capacitor. The
size of our pore restricts ion flow in a way we believe to be directly proportional
to voltage. There is also a small resistance due to the flow of ions within the
solution.
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3.2 MOdeling with a Linear Network

From our description we can notice some real circuit elements emerge and some
elements that resemble fluid analogies to circuit elements. We can start by
noting that the membrane is a capacitor. It acts as a wall separating two fluids
with charge. We apply a voltage across the membrane and charge will build
up against it, but can not pass through it. We also note that the size of our
pore restricts the flow of ions from the higher potential region to the lower in a
somewhat linear fashion and hence we model it as a resistor. The same applies
for the movement of ions within the solution. We note that our system has
other walls separating the solutions and other capacitive effects and hence add
a capactior to model parasitics. We end up with the following RC network to
describe our system.



4 Circuit Model Analysis

Now that we have acheived a basic linear circuit approximation for our sytem
we need to verify that our model does give a response similar to that observed
experimentally.
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This graphic shows the time-domain response of our system directly following
a voltage step. After falling from a very large peak, we see an overshoot and
then a transient response to the steady-state current level.

We must first decide what model we want to use to power the network. As
a first-order approximation, an ideal voltage source with a step at t=0 from 0V
to Vpwill be used. Our RC network can now be modeled with the following
equations:
iy = 80, + egte

dt — RuCm ' R.Cm
where V,,is the voltage at the node between R, and R..
The second equation can be solved analytically as a first-order differential

equation, where V), is represented by a Heaviside function.
Vm(t) = BV (1 - e_(Rclem +Ralcm )t)

" Ru.+R.

Substituting this solution into our first equation we can solve for 7.
ip = 6(0)C, + L2

Our analytic solution will include a delta function at zero, and hence, can not
be handeled by most computers for numerically solving. Instead of using a delta
function, we will make a discrete step function and numerically differentiate to
avoid this complication. The spike we get will be very large compared to the
rest of our signal and hence will still appear infinite, minimizing error in the
numerical solution.

In solving these equations we will use the following component values, which




are experimentally obtained approximations.
R,:=10"*GQ
R.:=1G(}
Cp:=1pF
Cmn:=1pF
We arrive at the numerical solution shown here.

current(pa)

time(ms) T

This solution closely matches that shown by R. Smeets et al. in the paper
Noise in solid-state nanopores (2007). The time scaling issues in this model
are likely due to inaccurate component values to within an order of magnitude.
However, this model does not fit the experimental data very well.

If instead of viewing the voltage input as an ideal voltage source, we model
it by an operational amplifier with a resistive feedback, the model starts to look
more like the experimental data containing some oscillatory signal.
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This oscillation in the signal could be due to the signal being outside of
the frequency range of the amplifier. If this truly is the case, then the above
diagram would be a beginning explanation for the oscialltions. To better model
the data, a more accurate SPICE model of the amplifier would need to be found
or constructed.

5 Conclusion and Next Steps

At this point our model closely fits those found by other research groups. If
circuit values similar to those used in solid-state nanaopores replace the ones in
our model, the osciallatory behavior, likely due to the op amp, subsides and a
signal similar to our model is acheieved, indicating that this model is a decent
fit to our nanopore system and that our much smaller biological nanopore has
frequency components outside of the amplifiers range, hence we get an oscilla-
tory resopnse with the transient.

There will be two major next steps necessary to acheive a more accurate model.
First a better model for the amplifier will need to be put together. Once this
model is made, a better analysis determinig if the effects seen on the signal can
actually be attributed to the amplifier or if there might still be other compo-
nents contributing to the signal. In addition, more accurate approximations for



component values (order of magnitude) will need to be determined and then
either system identification or some other fitting method can be used to refine
these values to give a best fit to the experimental data.



