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Abstract— GPS tracking collars, the current method of 

noninvasively studying large mammals, give limited and 

undetailed data. The ANIMA project seeks to improve upon 

tracking collars by creating a tag that integrates a GPS with a 

magnetometer and an accelerometer. The additional sensors will 

give information about animal physiology and daily behaviors. 

To remain a commercially viable option to research scientists, the 

ANIMA tag must have a long life deployment while operating on 

limited battery capacity. Therefore, the onboard sensors must 

work in the most energy efficient way possible. This project 

focused on characterizing the sensors. Their long term stability 

was characterized, their start-up times were measured, and their 

power consumption in various settings was determined. Using the 

information gathered, the sensors can be optimized for both 

energy use and performance. 
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I. INTRODUCTION 

Studying large terrestrial mammals is relevant for wildlife 
conservation and management because large mammals can 
have an important impact on the ecosystems in which they live. 
Important insights can be gained by understanding their 
physiological capacities and daily behaviors. The current non-
invasive method of studying these animals is through the use of 
GPS tracking collars, which give limited and undetailed data.  

The ANIMA (Accelerometer Network Integrator for 
Mobile Animals) project, a partnership between the 
departments of Computer Engineering, Ecology and 
Evolutionary Biology, and Environmental Studies at UC Santa 
Cruz, seeks to improve the current tracking collar technology. 
They are designing and creating a technologically advanced tag 
that integrates several sensors and will be able to collect 
detailed data on animal movement and behaviors. The sensors 
include a GPS, an accelerometer, and a magnetometer. The 
Mediatek-3329 GPS will be used to track location. The 
Freescale MMA8451Q accelerometer detects motion and can 
consequently determine information like step rate, approximate 
speed, and various behaviors ranging from sleeping to hunting. 
The Freescale MAG3110 magnetometer will measure dir-
ection. In conjunction with information from the accel-
erometer, the magnetometer can be used in dead-reckoning of 
position when the GPS is not in use for power saving reasons.  

These sensors have unknown stabilities, start up times, and 
power consumptions. In order to collect data that is both 

accurate and comprehensive while remaining energy efficient, 
these parameters must be characterized. 

II. STABILITY 

All sensors inherently have noise, and this noise is dealt 
with in data processing algorithms. To test these algorithms, it 
is necessary to have accurate models of the sensor’s noise. 
Using models, it is possible to compare the ‘true signal’ with 
the processed signal to optimize processing algorithms. The 
model used is 

 ym = kyt + b(t) + νw, 

where ym is the measured output of the sensor, yt is the true 
signal, k is a scalar constant, νw is the normally distributed 
wide band noise, and b(t) is a null shift that changes with time. 
This null shift is described by 

 db/dt = -(1/τ)b+ ω  , 

where ω is normally distributed and τ is a time constant. 

An important case for this model occurs when the true 
signal is constant. Under these conditions, all the variation in 
the data is a result of the variation in the noise, since there is no 
variation in the true signal. Analyzing data taken with a known 
constant true signal can quantify the parameters of different 
types of noise, using the method of overbounding [1].  

For this reason, data was collected from the magnetometer 
and accelerometer on long term runs in quiet environments. 
The data presented here is from two overnight runs,  where 
data from the sensors was collected at 5 Hz. The accel-
erometer’s output data rate was set to 6.25 Hz, and the 
magnetometer’s was set at 10 Hz with an oversample ratio of 
128. Data from the magnetometer was observed to drift and 
show effects of nearby electronics, so magnetometer samples 
were clipped to the relatively more stable portions. 

The parameters of the noise were characterized using 
autocorrelation and an Allan variance analysis, following the 
method of overbounding[1]. Fig. 1 shows an example of the 
Allan variance plot and the autocorrelation plot for one axis of 
the accelerometer. Fig. 2 shows another example of these plots 
for the magnetometer. In the case of Fig. 2, the technique does 
not work because the magnetometer data was correlated. 



 

Fig. 1. The Allan variance plot and the autocorrelation plot generated in the 

overbounding analysis of the accelerometer’s noise. The values σw, σb1, and τ 
characterize the values of νw, ω, and τ in the sensor noise model [1]. 

 

Fig. 2. These plots generated in analyzing signals from the magnetometer 

were much less useful. The plots (espeically the autocorrelation plot) show 

that the data was correlated. 

This is due to the fact that the magnetometer readings were 
correlated with temperature in a relatively linear relationship 
(Fig. 3). The linear relationship was characterized and the 
magnetometer data was corrected (Fig. 4). However, even the 
corrected data was not free from correlation, and the 
overbounding method remained not useful. This is most likely 
due to noise from the temperature sensor. In the future, a 
similar test should be run with a higher quality temperature 
sensor to fully characterize the noise of the magnetometer.  

Table 1 displays the average values of the parameters of the 
noise models for each axis of the two sensors. 

 

 

Fig. 3. This plot compares magnetometer sensor readings with temperature, 

showing the clear linear relationship between the two. 

 

Fig. 4. These graphs show both uncorrected (a) and corrected (b) 

magnetometer data. The Y-axis is raw sensor output in bit counts and the X-

axis is time, spanning a few hours. 

TABLE I.   

 σw σb τ 

accx 0.6 mg 0.1 mg 98 s 

accy 0.6 mg 0.1 mg 122 s 

accz 0.7 mg 0.1 mg 112 s 

magx 2.2 µT 2.4 µT n/a 

magy 2.5 µT 2.4 µT n/a 

magz 4.3 µT 3.1 µT n/a 

Fig. 5. This table shows the averages of the values of σw, σb1, and τ from both 

overnight trials. 

a. Uncorrected 

 

b. Temperature Corrected 
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III. STARTUP TIMES 

When running the device, the various sensors will be power 
cycled to minimize battery usage and maximize the length of 
deployment. It is therefore important to understand the sensors’ 
startup times: the time it takes from power on to stability. 
There are two motivations for this – first, to ensure data 
integrity by waiting the appropriate amount of time after 
powering on and second, to estimate and minimize power 
consumption. 

 The time for a GPS to find a fix has previously been 
characterized[2]. Tests to determine startup times of the 
magnetometer and accelerometer had several steps. First, the 
sensors were turned off – either by removing a power source or 
by turning the sensor to standby mode via I2C. Then,  the 
sensors were moved into a different position to ensure that the 
post-restart readings would not be a memory of past readings. 
Lastly, the sensors were turned back on and/or to active mode. 
Immediately, data was recorded at 8 times the output data rate 
of the sensors. Trials were run at several of the sensor’s output 
data rate settings – 6.25 Hz to 200 Hz on the accelerometer and 
2.5 Hz to 80 Hz on the magnetometer. 

Graphing the sensors’ output against time reveals an 
obvious startup error, displayed in Fig. 6. To identify the time 
of stability in a consistent manner, the distribution of the last 
three quarters of data was used. Since stability was generally 
reached within the first two percent of the data, using the last 
three quarters as a comparison was fairly reliable. The first 
stable point was determined as being the first point to fall 
within 1.5 standard deviations of the stable data.  

The time of the first stable point varied with output data 
rate setting. In Fig. 7, the times are plotted in terms of the 
output data rates, or in number of sampling periods. In most 
cases, it took at most two sampling periods to achieve stability. 

IV. POWER CONSUMPTION 

A. Magnetometer and Accelerometer 

To estimate length of deployment, it is necessary to 
understand the power consumption of the sensor. Therefore, 
the current draws of the accelerometer, the magnetometer, and 
the GPS were measured. 

 

Fig. 6. Data from a freshly powered on sensor. Note the obvious startup 

error. 

 

 

Fig. 7. Time of stability plotted in terms of sampling period for both the 

magnetometer (c, d) and accelerometer (a, b). 

 

The current draws of the accelerometer and the magnet-
ometer were characterized using a low side current sensing 
circuit. This was done with a TI INA212 current shunt monitor, 
which has a gain of 1000. The shunt resistor used was 1 ohm 
for the magnetometer and 4.7 ohms for the accelerometer. 
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The current draws for both sensors were characterized both 
in active and standby modes. For each sensor in active mode, 
the current was characterized for several of the various output 
data rate settings. 

The current draw varied with the output data rate setting 
(Fig. 8 and Fig. 9), as was expected based on the data sheets. 
The accelerometer’s measured current was consistently 20 μA 
higher than the data sheet value for both active and standby 
modes (Fig. 8). Though 20 μA is very small,  the constant 
offset suggests a flaw in the measuring set up.  

The magnetometer included settings for both output data 
rate and oversampling rate. The internal sample rate is OS 
multiplied by ODR, and this was the value that showed a 
correlation with current draw (Fig. 9). Again, there was a 20-25 
μA offset obvious in standby mode current draws.  

Though the average current draws were generally 
consistent with the data sheet’s values, there was much 
variation in the current draw when the sensors were in active 
mode (Fig. 10).  Both the magnetometer and the accelerometer 
displayed this pattern of skewed current distributions in active 
mode. The distributions are displayed as cumulative density 
function graphs in Appendix A.  

 

 

Fig. 8. The average current draw of the accelerometer at different Output 

Data Rate settings in both active (a) and standby (b) mode. The red points 

represent the values cited on the datasheet. 

 

Fig. 9. The average current draw of the magnetometer at different internal 

sampling period (Output Data Rate * Over Sampling ratio) settings in both 

active (a) and standby (b) mode. The red points represent the values cited on 
the datasheet. 

B. GPS 

The current draw of the GPS was characterized using a low 
side current sensing circuit. This was done with two chained 
op-amps and a 1 ohm shunt resistor. The current draw was 
characterized while the GPS was acquiring a fix after a power 
on, a cold restart, a warm restart, and a hot restart. These restart 
types simulate the GPS starting with different amounts of 
information about its location. The time to acquire a fix is 
known to vary between the different restarts[2]. 

 

 

Fig. 10. An example sample of raw current draw data of the accelerometer’s 

current draw in both standby (a) and active (b) mode. Note the normal 

distribution of the standby data (a) in contrast with the skewed distribution of 
the active data (b). 
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The average measured currents of the GPS are displayed in 
Fig. 11. Oddly, there is a noticeable difference in the current 
draw between the post-turn on and post-cold restart. A cold 
restart is meant to simulate the GPS turning on from power off. 
This difference draws into suspicion the restart functions of the 
GPS. However, an important observation remains: the average 
current draw varies very little between the different types of 
restarts. Further tests should be done to understand the 
discrepancy between the post-turn on current and the post-cold 
restart current. 

 

Fig. 11. The average current draw of the accelerometer at different Output 

Data Rate settings in both active (a) and standby (b) mode. The red line 

represents the current draw cited in the datasheet. A. 

Like the magnetometer and the accelerometer, the GPS 
showed a skewed distribution of current draws. The 
distribution is also displayed in cumulative density function 
graphs in Appendix A. 

CONCLUSIONS 

 The characterizations of the magnetometer, accelerometer, 

and GPS done in this project will be valuable to the ANIMA 

project at UC Santa Cruz. Using the information about 

stability, the sensor’s noise can be modeled and data 

processing algorithms can be refined. Using the startup and 

power consumption information, a power aware state machine 

can be create that cycles power to the sensors in the most 

energy efficient way. Furthermore, the sensors may be used in 

other projects, so the characterization of them will be useful.  
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APPENDIX A 

 

Displayed below are graphs of the empirical average cumulative density functions of the current draws of the sensors at 

different sampling rates. Indicated by red lines on the graphs are the average current draws and the current under which the sensor 

drew 95% of the time. Also denoted is the percentage of current draws under the average current draw.  
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