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Abstract— GPS tracking collars, the current method of
noninvasively studying large mammals, give limited and
undetailed data. The ANIMA project seeks to improve upon
tracking collars by creating a tag that integrates a GPS with a
magnetometer and an accelerometer. The additional sensors will
give information about animal physiology and daily behaviors.
To remain a commercially viable option to research scientists, the
ANIMA tag must have a long life deployment while operating on
limited battery capacity. Therefore, the onboard sensors must
work in the most energy efficient way possible. This project
focused on characterizing the sensors. Their long term stability
was characterized, their start-up times were measured, and their
power consumption in various settings was determined. Using the
information gathered, the sensors can be optimized for both
energy use and performance.

Keywords—accelerometer; magnetometer; GPS; current draw;
stability

. INTRODUCTION

Studying large terrestrial mammals is relevant for wildlife
conservation and management because large mammals can
have an important impact on the ecosystems in which they live.
Important insights can be gained by understanding their
physiological capacities and daily behaviors. The current non-
invasive method of studying these animals is through the use of
GPS tracking collars, which give limited and undetailed data.

The ANIMA (Accelerometer Network Integrator for
Mobile Animals) project, a partnership between the
departments of Computer Engineering, Ecology and
Evolutionary Biology, and Environmental Studies at UC Santa
Cruz, seeks to improve the current tracking collar technology.
They are designing and creating a technologically advanced tag
that integrates several sensors and will be able to collect
detailed data on animal movement and behaviors. The sensors
include a GPS, an accelerometer, and a magnetometer. The
Mediatek-3329 GPS will be used to track location. The
Freescale MMAB8451Q accelerometer detects motion and can
consequently determine information like step rate, approximate
speed, and various behaviors ranging from sleeping to hunting.
The Freescale MAG3110 magnetometer will measure dir-
ection. In conjunction with information from the accel-
erometer, the magnetometer can be used in dead-reckoning of
position when the GPS is not in use for power saving reasons.

These sensors have unknown stabilities, start up times, and
power consumptions. In order to collect data that is both

accurate and comprehensive while remaining energy efficient,
these parameters must be characterized.

Il.  STABILITY

All sensors inherently have noise, and this noise is dealt
with in data processing algorithms. To test these algorithms, it
is necessary to have accurate models of the sensor’s noise.
Using models, it is possible to compare the ‘true signal’ with
the processed signal to optimize processing algorithms. The
model used is

Ym = Kyt + b(1) + v, )

where y, is the measured output of the sensor, y; is the true
signal, k is a scalar constant, v,, is the normally distributed
wide band noise, and b(t) is a null shift that changes with time.
This null shift is described by

db/dt = -(U/)b+ o |, )

where o is normally distributed and t is a time constant.

An important case for this model occurs when the true
signal is constant. Under these conditions, all the variation in
the data is a result of the variation in the noise, since there is no
variation in the true signal. Analyzing data taken with a known
constant true signal can quantify the parameters of different
types of noise, using the method of overbounding [1].

For this reason, data was collected from the magnetometer
and accelerometer on long term runs in quiet environments.
The data presented here is from two overnight runs, where
data from the sensors was collected at 5 Hz. The accel-
erometer’s output data rate was set to 6.25 Hz, and the
magnetometer’s was set at 10 Hz with an oversample ratio of
128. Data from the magnetometer was observed to drift and
show effects of nearby electronics, so magnetometer samples
were clipped to the relatively more stable portions.

The parameters of the noise were characterized using
autocorrelation and an Allan variance analysis, following the
method of overbounding[1]. Fig. 1 shows an example of the
Allan variance plot and the autocorrelation plot for one axis of
the accelerometer. Fig. 2 shows another example of these plots
for the magnetometer. In the case of Fig. 2, the technique does
not work because the magnetometer data was correlated.
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Fig. 1. The Allan variance plot and the autocorrelation plot generated in the
overbounding analysis of the accelerometer’s noise. The values 6w, oy, and T
characterize the values of vy, ®, and t in the sensor noise model [1].
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Fig. 2. These plots generated in analyzing signals from the magnetometer
were much less useful. The plots (espeically the autocorrelation plot) show
that the data was correlated.

This is due to the fact that the magnetometer readings were
correlated with temperature in a relatively linear relationship
(Fig. 3). The linear relationship was characterized and the
magnetometer data was corrected (Fig. 4). However, even the
corrected data was not free from correlation, and the
overbounding method remained not useful. This is most likely
due to noise from the temperature sensor. In the future, a
similar test should be run with a higher quality temperature
sensor to fully characterize the noise of the magnetometer.

Table 1 displays the average values of the parameters of the
noise models for each axis of the two sensors.
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Fig. 3. This plot compares magnetometer sensor readings with temperature,
showing the clear linear relationship between the two.

a. Uncorrected

S

b. Temperature Corrected

e

Fig. 4. These graphs show both uncorrected (a) and corrected (b)
magnetometer data. The Y-axis is raw sensor output in bit counts and the X-
axis is time, spanning a few hours.

TABLE I
Ow Cp T

accx 0.6 mg 0.1 mg 98s
accy 0.6 mg 0.1 mg 122's
acc, 0.7 mg 0.1 mg 112s
magy 22T 24uT nla
magy 25uT 24uT nla
mag, 4.3 uT 3.1uT nla

Fig. 5. This table shows the averages of the values of oy, op1, and T from both

overnight trials.




I1l.  STARTUP TIMES

When running the device, the various sensors will be power
cycled to minimize battery usage and maximize the length of
deployment. It is therefore important to understand the sensors’
startup times: the time it takes from power on to stability.
There are two motivations for this — first, to ensure data
integrity by waiting the appropriate amount of time after
powering on and second, to estimate and minimize power
consumption.

The time for a GPS to find a fix has previously been
characterized[2]. Tests to determine startup times of the
magnetometer and accelerometer had several steps. First, the
sensors were turned off — either by removing a power source or
by turning the sensor to standby mode via 12C. Then, the
sensors were moved into a different position to ensure that the
post-restart readings would not be a memory of past readings.
Lastly, the sensors were turned back on and/or to active mode.
Immediately, data was recorded at 8 times the output data rate
of the sensors. Trials were run at several of the sensor’s output
data rate settings — 6.25 Hz to 200 Hz on the accelerometer and
2.5 Hz to 80 Hz on the magnetometer.

Graphing the sensors’ output against time reveals an
obvious startup error, displayed in Fig. 6. To identify the time
of stability in a consistent manner, the distribution of the last
three quarters of data was used. Since stability was generally
reached within the first two percent of the data, using the last
three quarters as a comparison was fairly reliable. The first
stable point was determined as being the first point to fall
within 1.5 standard deviations of the stable data.

The time of the first stable point varied with output data
rate setting. In Fig. 7, the times are plotted in terms of the
output data rates, or in number of sampling periods. In most
cases, it took at most two sampling periods to achieve stability.

IV. POWER CONSUMPTION

A. Magnetometer and Accelerometer

To estimate length of deployment, it is necessary to
understand the power consumption of the sensor. Therefore,
the current draws of the accelerometer, the magnetometer, and
the GPS were measured.
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Fig. 6. Data from a freshly powered on sensor. Note the obvious startup
error.
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Fig. 7. Time of stability plotted in terms of sampling period for both the
magnetometer (c, d) and accelerometer (a, b).

The current draws of the accelerometer and the magnet-
ometer were characterized using a low side current sensing
circuit. This was done with a TI INA212 current shunt monitor,
which has a gain of 1000. The shunt resistor used was 1 ohm
for the magnetometer and 4.7 ohms for the accelerometer.



The current draws for both sensors were characterized both
in active and standby modes. For each sensor in active mode,
the current was characterized for several of the various output
data rate settings.

The current draw varied with the output data rate setting
(Fig. 8 and Fig. 9), as was expected based on the data sheets.
The accelerometer’s measured current was consistently 20 pA
higher than the data sheet value for both active and standby
modes (Fig. 8). Though 20 pA is very small, the constant
offset suggests a flaw in the measuring set up.

The magnetometer included settings for both output data
rate and oversampling rate. The internal sample rate is OS
multiplied by ODR, and this was the value that showed a
correlation with current draw (Fig. 9). Again, there was a 20-25
pA offset obvious in standby mode current draws.

Though the average current draws were generally
consistent with the data sheet’s values, there was much
variation in the current draw when the sensors were in active
mode (Fig. 10). Both the magnetometer and the accelerometer
displayed this pattern of skewed current distributions in active
mode. The distributions are displayed as cumulative density
function graphs in Appendix A.
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Fig. 8. The average current draw of the accelerometer at different Output
Data Rate settings in both active (a) and standby (b) mode. The red points
represent the values cited on the datasheet.
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Fig. 9. The average current draw of the magnetometer at different internal
sampling period (Output Data Rate * Over Sampling ratio) settings in both
active (a) and standby (b) mode. The red points represent the values cited on
the datasheet.

B. GPS

The current draw of the GPS was characterized using a low
side current sensing circuit. This was done with two chained
op-amps and a 1 ohm shunt resistor. The current draw was
characterized while the GPS was acquiring a fix after a power
on, a cold restart, a warm restart, and a hot restart. These restart
types simulate the GPS starting with different amounts of
information about its location. The time to acquire a fix is
known to vary between the different restarts[2].

a. Standby b. Active
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Fig. 10. An example sample of raw current draw data of the accelerometer’s
current draw in both standby (a) and active (b) mode. Note the normal
distribution of the standby data (a) in contrast with the skewed distribution of
the active data (b).



The average measured currents of the GPS are displayed in
Fig. 11. Oddly, there is a noticeable difference in the current
draw between the post-turn on and post-cold restart. A cold
restart is meant to simulate the GPS turning on from power off.
This difference draws into suspicion the restart functions of the
GPS. However, an important observation remains: the average
current draw varies very little between the different types of
restarts. Further tests should be done to understand the
discrepancy between the post-turn on current and the post-cold
restart current.
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Fig. 11. The average current draw of the accelerometer at different Output
Data Rate settings in both active (a) and standby (b) mode. The red line
represents the current draw cited in the datasheet. A.

Like the magnetometer and the accelerometer, the GPS
showed a skewed distribution of current draws. The
distribution is also displayed in cumulative density function
graphs in Appendix A.

CONCLUSIONS

The characterizations of the magnetometer, accelerometer,
and GPS done in this project will be valuable to the ANIMA
project at UC Santa Cruz. Using the information about
stability, the sensor’s noise can be modeled and data
processing algorithms can be refined. Using the startup and
power consumption information, a power aware state machine
can be create that cycles power to the sensors in the most
energy efficient way. Furthermore, the sensors may be used in
other projects, so the characterization of them will be useful.
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APPENDIX A

Displayed below are graphs of the empirical average cumulative density functions of the current draws of the sensors at
different sampling rates. Indicated by red lines on the graphs are the average current draws and the current under which the sensor

drew 95% of the time. Also denoted is the percentage of current draws under the average current draw.
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