Epidemic Routing for DTN2

Introduction 
The protocols used to send data over the internet, such as TCP, assume that the route from source to destination is static and complete. In order to send a packet from one node to another, every node in between must be connected and ready to send and receive data. While this means that messages reliably reach their destination quickly, it also results in situations where no data can be transmitted at all. There are many cases where a complete path rarely or never exists, but the networked is partitioned into pieces that are connected, at various points in time. As the use of the internet is expanding, it is becoming more and more important to be able to send information over partitioned networks. Networks can be partitioned for many reasons: nodes can be mobile and only in contact for a short period of time, terrain between nodes can cause loss of communication, long hops can cause large delays, water, and space can cause delays. It is critically important that information be sent over networks with these, and other, partitions.
The concept of Delay Tolerant Networking is a starting solution for the problem of sending data over partitioned network. The concept was introduced by researchers as another layer to the OSI model of the internet. Above the transport layer is a bundles layer, which deals with sending bundles to the next available hop. The bundles layer communicates with the lower levels, dealing with sending a DTN “bundle” from the source to destination by utilizing the lower levels for each individual hop. The bundles layer is responsible for deciding which nodes to send the bundle to.

Routing algorithms dictate how the bundles layer operates. Routing algorithms can be as simple as only using predefined routes, or as complicated as using information to make predictions about the best route, or series of nodes, to send the bundle over. Different routing algorithms are optimal for different situations depending on the resources of the network. 
The Epidemic routing algorithm, so named because it spreads like infectious diseases, is a simple algorithm which delivers most bundles successfully but also uses a large amount of bandwidth. When two nodes come into contact, the first node sends the second node a summary vector containing information that uniquely identifies the bundles it has. The second node then sends the first node any bundles it has that the first does not. This takes place in both directions whenever two nodes come into contact. Because every bundle will ultimately be distributed to every node, every bundle will reach its destination as quickly as possible with a very high probability. However, a large amount of both bandwidth and buffer space is wasted. 

The addition of “immunization” to epidemic reduces buffer space wasted. When a bundle is received at its destination node, the node edits its summary vector to include confirmation that the bundle has been received. Each node that receives the summary vector will similarly edit its summary vector and cease propagating the received bundle forward.

The SCORPION (Santa Cruz mObile Radio Platform for Indoor and Outdoor Networks) testbed consists of wireless nodes that are mobile, stationary, and aerial. The heterogeneous nature of the testbed makes it ideal to test wireless protocols. We wrote code to run on these nodes and test the performance of Epidemic on DTN2.
Related Work
The RAPID protocol was developed as an external router for DTN2 at the University of Massachusetts Amherst for testing on DieselNet. This protocol, written in Java, optimizes performance based on different metrics depending on a network’s specifications. Analyzing this code was useful in designing an external router for DTN2. [http://delivery.acm.org/10.1145/1290000/1282422/p373-balasubramanian.pdf.]

The Prophet protocol is an internal router for DTN2 written in C++. Prophet uses probability based on the fact that people follow similar paths and send messages to similar destinations. Probabilities are included in the summary vectors sent between nodes, and are used to decide whether a bundle should be forwarded or not. Analyzing this code was useful in understanding the basics of routers in DTN2.
[http://www3.informatik.uni-wuerzburg.de/euroview/2009/data/abstracts/Session1-Casaca-abstract.pdf]
Implementation

DTN2 is the current reference implementation for Delay Tolerant Networks by the DTN Research Group. It acts as an additional networking layer between the application layer and the transport layer. Machines utilizing this layer are referred to as "nodes". DTN2 encapsulates application data into what are known as "bundles", thus it is often called the "bundle layer",  and calls on the transport layer to forward bundles from one node to the next. When two nodes are within range and have an established connection on the transport layer, the "link" between them is considered "open". While the transport layer, using traditional networking protocols, ensures delivery of bundle data from one node to the next, DTN2 is meant to ensure end-to-end delivery of bundles across the entire network. [http://tools.ietf.org/html/rfc4838]

The decision making aspect of the bundle layer, which controls what bundles are sent over what links, is called the router. DTN2 includes a number of internal routers, such as:
· static: only sends a bundle over an open link whose remote endpoint is the bundle's final destination

· flood: sends every bundle across every link as soon as it is open

· PRoPHET (described above)

DTN2 also includes support for external routers. External routers run as separate processes and communicate with DTN2 by sending and receiving XML messages over a multicast socket. DTN2 sends XML event messages to a multicast socket, from which the external router reads. The external router then processes the message, and may or may not decide to send back an XML request message, prompting DTN2 to take action.

We chose to implement Epidemic as an external router so that the code could be compiled and maintained separately from DTN2. Because of the Epidemic protocol's simplicity, an advantage to the XML-based interface is that our external router need only to acknowledge relevant XML messages and extract only the information it considers useful.

Our version of Epidemic is different from the one described in [http://issg.cs.duke.edu/epidemic/epidemic.pdf] in that it uses a two-way handshake rather than a three-way handshake. When two nodes come into contact, each node sends the other a summary vector, or list of bundles that the node has in possession. Upon receiving the summary vector, a node proceeds to send the remote node any bundles that it is missing, for as long as the link remains open. The assumption is made that a node that sends its summary vector is willing to receive new bundles.

This elimination of the middle step, where a node that receives summary vectors requests bundles it is missing, significantly reduces overhead. Because a link between nodes may only be open for a short time, we want to start sending data as quickly as possible.

Our Epidemic router can be run with and without immunization. Without immunization, all nodes should eventually contract every bundle they come across. While this is not applicable to a real network, it serves as a solid control point for experimentation purposes. With immunization, when a node receives a bundle that is destined for it, the node adds an acknowledgement for that bundle to its summary vector. As the summary vector is sent to remote nodes, those nodes delete their local copy of the bundle and add the acknowledgement to their own summary vector. In this way acknowledgements are propagated back throughout the network.

Using this method, summary vectors still grow in size proportional to the number of bundles the node comes across. Various policies could be implemented to drop records of long-acknowledged bundles all together, thus keeping the average summary vector size proportional to the number of active bundles in the network. Exactly how to do this is beyond the scope of our implementation.

Testing

Our router was tested on the SCORPION testbed at University of California Santa Cruz. Our experiments were set up as follows. At three points along a half-mile track, a group of nodes with wireless communication capabilities was set up, so that each group was out of range from the other two. Each group consisted of three nodes, one of which was outfitted with a webcam. The node with the webcam would take a picture every X seconds and send that picture over DTN2, destined for a random node in one of the other groups. Two more nodes, traveling around the track at different speeds, acted as data mules to carry bundles between groups. Each experiment lasted for forty minutes.

Two experiments were run, one without immunization, and one with. Our hypothesis was the following. Without immunization, we should see the pictures originating from each group on every node, except perhaps the last pictures taken, because the data mules were not given adequate time to deliver them. The average buffer space needed on each node should be relatively high. With immunization, every node destined to receive a picture should have that picture, again except perhaps the pictures taken toward the very end of the experiment. In this case the average buffer space needed by each node should be relatively low. In fact most of the bundles that each node possesses should be those that have not yet been delivered to their final destination.

.. graphs..data..
Conclusion
Our implementation of the Epidemic routing protocol as an external router for DTN2 was a success. The results of the experiments confirmed our hypotheses. Our data verifies that immunization is a vital part of efficiently using a network's resources, and that more research on methods of acknowledgement should be conducted.
Future Work
Epidemic is the basis upon which many more sophisticated protocols have been developed [?]. Our framework handles the communication between DTN2 and implements the basic features of Epidemic. Other researchers can easily expand upon our code to test additional ideas for routing algorithm features.

One such idea, described in [http://issg.cs.duke.edu/epidemic/epidemic.pdf], is that of restricting the number of times a bundle is forwarded by a limiting factor referred to as "max hops". Once a bundle as been forwarded the maximum number of times, it is assumed that enough nodes have the bundle for at least one of them to come in contact with the its final destination. This measure, like immunization, is another way to conserve nodes' buffer space.

Any other possible factors can be included to test a specific routing algorithm. As much information as necessary can be extracted from DTN2's XML messages, in the same fashion that it is currently done. Our hope is that our code provides a solid starting point for which further routing algorithm ideas can be tested in the context of DTN2.
