
Creating a Management Suite for a Mobile, Wireless, Serverless Testbed
Wade Gobel

The structure of the modern internet formed so quickly and organically that it is 

highly probable that several aspects of its current organization can be improved and 

optimized. Research in the areas of computerized networks must therefore scrutinize the 

efficiency, practicality, and effectiveness of current standards instead of merely adding to 

them. One area that holds great potential for improvement lies in the physical structure of 

the internet itself.

The backbone of the modern internet consists of immobile wired connections 

(ethernet, telephone lines) and stationary servers at known locations. Servers are 

computers that host online media and direct requests for online data to other servers. As 

more and more people begin to use the internet, and as more resources become available 

online, the load on each individual server increases exponentially. The larger the capacity 

of the server, the more electricity it requires for running and cooling, and the greater 

amount of information that is lost if a server becomes inoperable. Although the use of 

servers is somewhat intuitive for networked communication, it is hardly necessary for 

communicating across the internet. With the advent and improvement of wireless internet 

technologies, the reliance on servers may prove to be completely unnecessary.

At the University of California, Santa Cruz, the wireless networks lab has created 

a wireless network that operates without the use of servers: the Santa Cruz mObile Radio 

Platform for Indoor / Outdoor Networks, or SCORPION. While this network is hardly 

ready to replace the modern internet, it possesses some key strengths, even as a 

prototype. First, with the removal of servers, the information available on SCORPION 

must be stored on the nodes themselves – that is, the computers requesting internet 



service must also provide it to one another. Second, each SCORPION node is only 

connected to the internet wirelessly, so any protocol used for sending and receiving data 

must be able to tolerate long delays in connectivity. Finally, every node can be moved 

about the UCSC campus, thereby eliminating the assumption that any node is always at a 

predefined location, and also providing connectivity to a wider physical range. So while 

the modern internet is for the most part stationary, wired, and server-dependent, 

SCORPION is mobile, wireless, and server-free. With this infrastructure in place, new 

internet protocols can be tested in real-world conditions, with nodes playing the roles of 

laptops, cell phones, or any other modern mobile wireless-capable computer.

Although the SCORPION nodes are intended as placeholders for laptops and cell 

phones, they possess hardly as much computational power or infrastructure as their 

counterparts. Many SCORPION nodes are little more than a Linux operating system 

installed on a motherboard with a wireless radio. As such, the nodes possess neither 

monitors nor keyboards, and must therefore be accessed and modified in other ways. 

Before the summer of 2009, the best method for communicating with any node was 

through a secure wireless connection (ssh). Establishing such a connection could be time-

consuming as it required a user to enter a password. If a wireless connection was weak, 

then any communication could be significantly delayed, occasionally by several minutes. 

In addition, once a secure connection was established, it became difficult to tell if the 

connection had been terminated, or if the signal strength had merely deteriorated. To 

complicate matters further, the hardware on some of the nodes was sensitive to the point 

that the software would freeze and become unresponsive if the outer casing was jostled. 

Carrying out experiments with SCORPION nodes was therefore tricky. First, each node 



used in an experiment would have to be turned on in the lab. After establishing a 

connection with each node individually, all the nodes' cron job lists would have to be 

modified so that the appropriate test scripts would be executed in the near future. The 

nodes would then be transported to and set up at their physical destinations for the test, 

hopefully before the cron jobs began. At any point in this process, a node could have 

been jostled, causing it to become inoperable until restarted. Such a process of 

experimentation was difficult, fragile, and error-prone, and once on the field, it became 

outright impossible to test whether the experiment was running correctly. The solution to 

these problems was to create a management suite.

The purpose of a management suite is to simplify communication with the nodes 

in the SCORPION testbed, thereby facilitating experiments. The management suite 

provides useful functions for sending requests to and receiving data from the nodes, 

communicating with several nodes simultaneously, and all without a slow secure 

connection. Each node runs a simple program that listens for requests in a predefined, 

trusted format (on a predefined port), and whenever such a request is received, the node 

fulfills the request and replies with the results. A user sends formatted requests from a 

laptop or other wireless-enabled device, thereby setting up and conducting experiments in 

the field (instead of setting up the nodes one by one in the lab and then transporting them 

to the field). For example, one experiment was conducted by transporting all nodes to the 

field before turning any of them on. The management suite was then used to check that 

all nodes were running properly. Once everything was ready, the management suite was 

used once more to begin the experiment on all the nodes simultaneously. And during a 

second experiment that used a plane node, it became apparent halfway through the run 



that the test program had not started properly on the plane (this was checked remotely 

using management suite functions). The management suite was then used to remotely 

start the appropriate code without landing or turning off the plane. Although the 

experiment ran for a shorter time than expected, the management suite was able to 

completely eliminate the necessity of running the experiment a second time, despite the 

initial error.

The management suite written for SCORPION in the summer of 2009 offers four 

simple functions that are able to significantly improve the ease and speed of testing. 

These functions allow a tester to 1) Determine which nodes are running and responsive, 

2) Obtain general statistics on running nodes, 3) View differences between local files (on 

the tester's laptop) and remote files (on the node), 4) Run command-line commands or 

scripts on the nodes, and 5) Overwrite the nodes' cron files. With just this functionality, a 

great deal of information and control becomes available remotely to the tester.

The four functions of the management suite were named nodels, nodediff, 

noderun, and nodecron.

Nodels (node-ell-ess) effectively pings all nodes by broadcasting a nodels request. 

Any nodes that receive a nodels request respond with the following information: the 

node's designated number (hostname), the node's kernel version, the amount of time the 

node has been running since it was last turned on, the node's latitude and longitude – if it 

was able to receive a GPS signal, or N/A if it was unable – the subversion revision 

number of the main source code directory, the percentage of the hard disk currently in 

use, and the percent usage of the CPU.



Nodediff is a simplification of the Linux "diff" command: given the path of a 

local file and a remote file, each node that receives a nodediff request checks whether its 

copy of the given file matches the requester's version of the file. The node then replies 

with one of "Same", "Different", or "File not found". Instead of sending the entire local 

file, nodediff simply sends the md5sum of the local file, along with the path of the remote

file, so the node need only check the md5sums of the files to carry out the comparison.

The noderun command requires either a –c or a –s flag, which indicates whether 

the receiving node will be running a command-line command (–c) or a script provided by 

the user (–s). A node replies to a noderun –c request with the text outputted to stdout as a 

result of the command. If the script provided for noderun –s terminates with value 0, a

node replies with "Success", or "Fail" otherwise.

Nodecron takes a file and sets each node's cron job list to the provided file. 

Similarly to noderun –s, if the cron job list is installed successfully, a node replies with 

"Success", or "Fail" otherwise.

In addition to the base functionality, each function takes at least one optional 

argument. The –t flag can be provided to any function in the management suite, along 

with a nonnegative integer or floating-point timeout in seconds. By default, the 

management suite waits 1.5 seconds after sending a request for all nodes to reply.

Occasionally, functioning nodes take slightly longer than this to receive, process, and 

respond to a request. Therefore, having the option of extending the timeout can be 

valuable on the field.

Since noderun –s and nodecron send entire files to certain nodes, the connection 

that must be established with each receiving node needs to be more reliable than a 



connection that only receives a short string. Such a connection takes time to establish, 

and might not work the first time it is attempted. Therefore, noderun –s and nodecron

each take an optional –r flag, along with a positive integer indicating the number of times 

to (re)try to establish a connection with the receiving nodes. Increasing the number of 

connection retries may delay the termination of the request, but also increases the chances 

of establishing a working connection. The default number of connection attempts is 1.

Finally, since not all nodes require the same modifications, the –n flag allows the 

user to specify a node list – i.e. a subset of the available nodes to send a particular 

request. Since nodels always broadcasts its request, it does not take the –n flag. Nodediff 

and noderun –c take the –n flag optionally, and since noderun –s and nodecron send

potentially long files, the –n flag is required in order to minimize the time it takes to send 

the requests to the desired nodes. If a node list is not provided for a particular function, 

the request is broadcast, any node that receives the broadcast replies to it, and any 

responses received by the requesting machine are displayed. If a node list is provided, 

only the indicated nodes are sent a request, and after the timeout, either a node's reply is 

outputted, or the string "No response" is printed, indicating that a reply from that node 

was not received.

The program flow for the management suite follows a simple client-server 

pattern. First, the user enters the desired command and arguments at the command line. 

Then the indicated function parses the arguments and sends its request to node_client, 

which handles communication with the nodes. The program that runs in the background 

on the nodes is called node_server, and when it receives a request from node_client, it 

parses the request, calls the appropriate function, and sends back a string indicating the 



node's number and the result of the request. Node_client collects all such replies, sorts 

them by the responding node's number, and outputs them to standard output.

The current version of the SCORPION management suite only uses the protocols

UDP and TCP.

UDP – the User Datagram Protocol – does not guarantee that a message will 

arrive at its destination, but if the message arrives, it is guaranteed to be error-free. In 

addition, if a UDP message is relatively short (less than 1K), it will probably be sent in a 

single packet. But if multiple UDP packets are sent, they are not guaranteed to arrive in 

order.

TCP – the Transmission Control Protocol – is more reliable than UDP but 

requires more time to work. If a TCP connection is established, then anything sent along 

this connection is guaranteed to reach its destination error-free and in the same order that 

it was sent (in the case of multiple packets). Since TCP is slower, it is only used when 

sending files to the nodes, where reliability and ordering are crucial. In fact, the –r flag 

indicates the number of times that node_client should attempt to establish a TCP 

connection with the receiving nodes.

If node_client is only sending a request, it uses UDP. If node_client needs to send 

a request and a file, it uses TCP. Since all replies are assumed to be relatively short, 

node_server only uses UDP for its responses. The program flow of the management suite 

therefore looks like this:



The request/response protocol used for node_client and node_server is relatively

simple. For messages, node_client simply sends a whitespace-delimited string using 

UDP, where the first token is the command and all following tokens are command 

arguments. For example, the command 'nodels –t 5' would be broadcast as just 'nodels', 

since the nodes receiving the request do not need to know the timeout. The command 

'noderun –c "uname -a"' would be sent as 'noderun c uname -a'.

For messages and files, node_client uses a slightly different format. The first four 

bytes of the TCP message are set aside as indicators of the lengths of the message and the 

file. The first byte indicates the message length (no message can be longer than 28 – 1 = 

255 bytes), and the next three bytes indicate the file length (maximum file length is 

therefore 224 – 1 bytes). Next comes the message (i.e. the command and arguments), then 

the text of the file.

After calling the appropriate function with the given arguments or file, 

node_server responds to each request with a UDP message of its own. A reply message 

consists of the responding node's number (as text), followed by a single space, then the 

string outputted by the called function, up to the first newline character.

When node_client receives a reply, it strips the node's number from the string, and 

stores the command's result for later output. If the node's indicated number is not 

registered as a legal node number, the response is ignored.

Possible future work on the management suite includes a nodeupdate function, as 

well as inter-node request routing. Nodeupdate is a function that runs on each node for 

the first 15 seconds after boot up, listening for a laptop registered in the vicinity (the 

laptop broadcasts its name along with a specific identifying string). If a laptop is found, 



then the node attempts to rsync its main source code directory to the laptop's copy of the 

same directory. This effectively automates the nodes' synchronization without the need to 

run a subversion update command on each node individually.

And if a laptop is unable to send a management suite command to all desired 

nodes, one possible solution would be to use intermediary nodes to send the request 

farther. One way this could be accomplished would be by sending a list of the desired 

recipient nodes along with any management suite request. Any node that receives the 

request would then broadcast a copy of the request, perhaps with its own number 

removed from the list of intended recipients.

With this selection of simple, lightweight, yet powerful functions, the 

SCORPION management suite has been able to significantly simplify the testing process 

of a new, fundamentally different version of the internet.

Acknowledgements

National Science Foundation: Sponsor of SURF-IT 2009

Katia Obraczka: Faculty advisor

James Koshimoto: Graduate advisor


