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Project Background

The Overbot is a former DARPA Grand Challenge autonomous vehicle, which participated 
in both the 2004 and 2005 races. The vehicle was donated to the UCSC Autonomous Systems Lab in 
the fall of 2005, where it is currently used for academic research. From a hardware standpoint, the 
Overbot consists of a six-wheeled Polaris Ranger utility vehicle, equipped with an assortment of   
sensors, actuators, and computers. These components are tied together through software, written  in 
C++ and run on the QNX real-time operating system, to achieve autonomous driving. The work done 
this summer has focused on both the software and hardware elements. First, the Overbot codebase was 
restored to a working state for future work with novel path finding algorithms; then, with the software 
up and running, work was done in reducing temporal drift in the Overbot's inertial sensors.

As a research testbed, the Overbot has been used to implement a number of autonomous control 
algorithms and its codebase put through numerous design iterations. The myriad of software tweaks, 
however, had rendered much of the codebase non-functional and its history difficult to follow. The first 
phase of this project centered on understanding both the past and present states of the Overbot 
software, as well as restoring it to its previously functional form. The structure of the Overbot codebase 
is discussed in the following section.

 The Overbot's autonomous driving hinges on its ability to obtain accurate data on its 
surroundings from an array of sensors. The Overbot derives a visual understanding of surrounding 
terrain using a laser range finder (LIDAR) unit. The vehicle is also equipped with a camera and 
software that carries out road-recognition, but this feature is no longer used. In addition to vision, the 
Overbot tracks its location relative to a set path using a GPS unit, coupled with an inertial sensor 
package. GPS data is used whenever possible; that is, when the data is within a threshold accuracy of 
15 centimeters. When the GPS data becomes less accurate, or otherwise unreliable, position data is 
corrected using the inertial unit. Overall, this position-estimation approach works well with reliable 
GPS data. Unfortunately, temporal drift in the inertial unit renders the Overbot largely ineffective when 
the GPS becomes spotty, since the inertial unit will accumulate as much as two to four meters of error 
for every 100 meters of dead reckoning [1]. Clearly, errors of this magnitude are unacceptable when 
driving hundreds of kilometers on narrow desert roads, such as those encountered during the Grand 
Challenge. Much of this summer, therefore, was spent replacing the existing inertial unit with two high-
precision modules, including a MIDG GPS/INS unit and a fiber optic gyroscope. This work is 
discussed in later sections.  
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Overbot Software

The Overbot software is structured as a handful of "servers", or processes that run under a 
central process called "Watchdog". The Watchdog process monitors each of the subordinate processes, 
restarting the entire system in the event that any of these fail. The various processes communicate 
amongst one another, as necessary, in accordance with the QNX message-passing standards. All 
software is launched by starting Watchdog with a "startfile" specifying the desired processes and 
waypoints file.

On the QNX PCs, startfiles are created under /gc/src/qnx/nav/map/. Watchdog is 
launched from /gc/src/qnx/support/watchdog/watchdog <startfile>. For 
instructions on launching Watchdog on the Overbot, refer to the yellow instruction card located in the 
vehicle itself.

At a high-level glance, autonomous driving is handled by three processes: the Steer, Move, and 
Map servers. The Map server aggregates data from the sensors to build a global terrain map, indicating 
drive-able regions around the vehicle. The Steer server consults the map maintained by the Map server 
and uses this information to perform path planning between waypoints. Once a path has been found, the 
Steer server propagates its information to the low-level Direction server, which then directly controls 
the front wheels. Acceleration and braking are managed by the Move server, which propagates 
information to its low-level counterpart, the Speed server.

Software Directory Structure

The following presents an outline of the Overbot codebase structure, highlighting those 
components that are of greatest interest.

/gc/src/qnx:
 
/common:
  /lib: Contains libraries that need to be built at the beginning of all 

installations. Libraries are installed using buildalllibs.sh.
  /include: Contains header files for the Overbot codebase. Header files are 

moved here when installing applications.

/control:
  /galil: Text files used for configuring the Galil motor controllers.
  /speed: Source code for the Speed server, which needs to be installed along 

with the rest of the software.

/drivers: Contains driver software for hardware installed on the Overbot
  /lms: Driver for the LIDAR unit
  /dummylms: False driver which simulates LIDAR functionality, used for testing 

purposes
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  /vorad: Driver for Vorad obstacle detection unit
/nav: Contains software responsible for steering and driving the Overbot
  /fusednav: Newer version of gpsins (see below)
  /gpsins: Server that communicates with the GPS and Inertial units
  /gpsins_logger: Server that logs GPS and Inertial data
  /map: Server that builds and maintains the global terrain map
  /move: Server responsible for acceleration and braking decisions

/support: 
  /remotemsgserver: Enables message passing between Watchdog processes and external 

applications (for testing purposes)
  /usercontrol: Code for a control interface to the Overbot
  /watchdog: Code for the global Watchdog application

/vision:
  /roadfollower: Software for camera-based road recognition
  /dummyroadfullower: False roadfollower used for testing purposes

Software Installation Workflow

The software installation procedure is documented on the lab wiki, but is also reproduced 
below. The given workflow reproduces a basic, functional set of binaries using revision 4040 of the 
Overbot subversion repository.

Checking out Revision 4040:

  svn co -r 4040 svn://overtux.cse.ucsc.edu:3691/overbot/trunk/gc 

Installing Binaries:

The following outlines the steps needed to recreate the basic functionality of the Overbot. Steps 
one through six can be automated using the software installation script posted on the ASL lab wiki.

 1.  Build Overbot Libraries
      a. cd /src/qnx/common/lib
   b. run bash buildalllibs.sh (within this directory)
 2.  Build Overbot Drivers
   a. cd /src/qnx/drivers
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b. Drivers must be built individually by running:
    make
    make install
       within each driver directory.
   c. Perform for each of the following:
    dummylms
    lms
    vorad
   d. Under lms run:
    make install_headers
 3.  Build Control Software
   a. cd /src/qnx/control/
   b. Make and install the contents of /speed
4.  Build Nav Software
   a. cd /src/qnx/nav/
   b. Make and install each of the following:
    fusednav
    gpsins
    gpsins_logger
    map
    move
   c. Note that mapfile and waypt are no longer in use.
 5.  Build Support Software
   a. cd /src/qnx/support/
   b. Make and install each of the following:
    remotemsgserver
    usercontrol
    watchdog
 6.  Build Vision Software
   a. cd /src/qnx/vision/
   b. Make and install dummyroadfollower
   c. Note that dummyroadfollower is solely a simulator component and that the Overbot  

    will later require the installation of roadfollower
 7.  Build GUI Interfaces
 a. The QNX GUI interfaces must be compiled from within QNX's PhAB development  

    software
   b. Launch PhAB from launch menu >> development >> builder
    

manual drive:

In PhAB:
     i. Navigate to: /src/qnx/support/manualdrive
     ii. Select application >> build and run or hit F5
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iii. Select target:
      Click generate button
      From ntox86_cpp choose gcc
      Click generate
     iv. Click make
    

In terminal:
      i. cd /src/qnx/support/manualdrive/src/
      ii. As root: make install
    

gpsins_gui:
     

In terminal:
      i. cd /src/qnx/nav/gpsins_gui/src/
      ii. make proto
     

In PhAB: 
i. Navigate to: /src/qnx/nav/gpsins_gui

     ii. Select application >> build and run or hit F5
     iii. The target should already be selected. If not, repeat steps from manual drive.
     iv. Click make
     

In terminal, again:
      i. cd /src/qnx/nav/gpsins_gui/src/
      ii. As root: make install
    

navviewer:

     In PhAB: 
i. Navigate to: /src/qnx/nav/tests/navviewer

     ii. Select application >> build and run or hit F5
     iii. The target should already be selected. If not, repeat steps in manual drive.
     iv. Click make
     

In terminal:
      i. cd /src/qnx/nav/tests/navviewer/src
      ii. As root: make install
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Interfacing the Fiber Optic Gyroscope

As discussed in the section on project background, the Overbot's existing inertial sensors suffer 
from excessive temporal drift. One proposed solution to this problem is to replace the current set of 
inertial sensors, along with the GPS unit, with two precision units: the MIDG INS/GPS and a fiber 
optic gyroscope (FOG). Under the proposed solution, data obtained from both units would be coupled 
through a processing unit, such as a microcontroller, and used to derive accurate heading and position 
data. The following sections detail work that was done in interfacing the latter of the two units, the 
fiber optic gyroscope, using a dsPIC33F microcontroller.

The fiber optic gyroscope is a high-precision alternative to MEMS gyroscopes. The underlying 
technology is based on optical interference; two beams of light, traveling in opposite directions around 
a coil of fiber optic cable, recombine with one another, producing an interference pattern, as shown in 
Figure 1 below. The resulting pattern depends on the phase difference between the two beams, which is 
dependent on the rate of rotation of the gyroscope. Hence, the interference pattern can be used to 
compute angular velocity. Whereas a conventional MEMS gyroscope might drift as much as 200 
degrees per hour when held stationary [2], a quality FOG will drift on the order of 18 degrees per hour. 
This reduction in temporal drift is the primary motivator in switching to a FOG unit for heading 
estimates.

Figure 1. Diagram of fiber optic gyroscope operation.

Interfacing through QNX

Most of the software on the Overbot runs on a single computer under the QNX real-time 
operating system. One option, therefore, would be to interface the fiber optic gyroscope directly to that 
computer via a serial port. Data could be read in through a software driver, much as it is under the 
current hardware setup. This possibility was pursued, albeit briefly, using an existing serial library from 
the Overbot codebase.

The FOG serial port reader makes use of an Overbot library called myserial.h, which essentially 
encapsulates the UNIX termios library. Using myserial.h, the serial port reader sets up a serial object 
with parameters 38400baud, 8 data bits, 1 stop bit, no parity. This object is then used to read data, one 
bit at a time, into a simple state machine that scans for delimiters. In this case, data words are delimited 
with a carriage return, linefeed sequence (ASCII 13 and 10). Once received into a buffer, each data 
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word is parsed by removing space characters and converting the remaining digits into a float.
It's worth noting that sending data to the screen in QNX is incredibly taxing on the system, and 

will cause serial data to be lost. The serial reader, therefore, minimizes use of standard output. Although 
the QNX serial port reader works sufficient well in channeling data from the FOG module to the 
Overbot computer, it was decided that interfacing both the FOG and the MIDG to the computer in this 
manner, as well as coupling the two through added software, would unnecessarily increase the load on 
that computer. Thus an alternate solution, involving a dsPIC33F microcontroller, was devised.

Interfacing through dsPIC33F

In the interest of decreasing the computational load on the Overbot's primary computers, both 
the FOG and MIDG units will be interfaced through a dsPIC33F microcontroller, which will perform 
estimation of the vehicle's position and heading. A block diagram of the proposed solution is given in 
Figure 2. An added advantage of bundling the two sensors in this manner is that it increases the 
modularity and maintainability of the Overbot's various sensor groups.

The software for interfacing the FOG to the dsPIC33F microcontroller is written in C, 
specifically for the Microchip C30 compiler. The software makes use of both UART modules, one for 
reading the FOG unit and the other for transmitting. Data is accumulated in a series of circular buffers, 
originally written by Mariano Lizarraga for the ASL autopilot and modified slightly for use with the 
FOG. Both the receive and transmit functions are interrupt driven, allowing the microcontroller to 
perform any future processing that might be desired, such as Kalman filtering.

Figure 2. Block diagram for MIDG, FOG bundle.

FOG Software Outline:

The following is an outline of the FOG interface software, most notably the configuration of the 
two UART modules.

dsPIC_FOG.c:

configure():
Turns off nested interrupts (ability for interrupts to interrupt one another)

switchClock():
Performs clock switch from slow, stable internal RC oscillator to faster
external clock. PLL configured for 40MHz (40MIPS). 
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initCircBuffers():
Initializes transmit and receive CircBuffers for both UARTs.

configUART1():
Configures receive interrupt to fire whenever the receive buffer exceeds three bytes
(out of four), and the transmit interrupt to fire after each transmission. Also sets baud 
rate to 38400, which corresponds to the baud rate on the FOG unit.

configUART2():
Repeats the configuration of UART1, but for UART2. Hence, the two UARTs

                        are identical.

configFOG():
Configures the FOG to perform integration, and zeros the unit by sending it a 
sequence of two characters.

RX Interrupt Service Routines (x2):
The two receive-oriented interrupt service routines are relatively straightforward. 
These will read the contents of the hardware receive buffers and append the read bytes to 
the larger software receive buffers. In the event that the software buffer is full, the 
interrupt is turned off.

TX Interrupt Service Routines (x2):
The transmit-oriented interrupt service routines simply read data off the front of the 
transmit CircBuffer, writing it to the UART for transmission. In the event that the 
transmit CircBuffer is empty, the interrupt is turned off.

main()
The main function runs an infinite loop which constantly moves data from the 
receive buffer of the receiving UART to the transmit buffer of the transmitting 
UART. Processing stages could be inserted in between this transfer. In addition to 
shuffling data between the software buffers, the main function also checks any 
disabled interrupts, reactivating these if necessary.

MAX3111 Additional UART Module

The dsPIC33F microcontroller supports up to two UART modules. As can be seen from the 
block diagram in Figure 2, the MIDG/FOG bundle requires three: two for receiving data and one for 
transmitting it. Hence, an additional UART module is needed to complete the package. Maxim's 
MAX3111 SPI to UART chip lends itself nicely to this task. Among its many useful features, the 
Maxim chip contains internal RS-232 transceivers and receivers, meaning that configuring an 
additional UART module for the dsPIC33F is as simple as writing an SPI driver.
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MAX311x Software:

The software for the Maxim UART chip is contained in a simple library called MAX311x 
(includes both header and implementation files). This software effectively provides an abstracted 
UART in the sense that it encapsulates the entirety of the required SPI interaction, allowing the user to 
simply read and write to a pair of transmit and receive buffers (as they would when interacting with a 
standard UART module). The content of the MAX311x library is outlined below.

MAX311x.h:

The header declares the constructor for the MAX311x. This is the only function that needs to be 
called to set up and begin interacting with the UART module. The constructor takes pointers to two 
CircBuffers, which the software then uses to transmit and receive data through the abstracted UART. 
The user interacts with the UART by writing to and reading from these buffers.

MAX311x.c:

The implementation file contains a number of configuration and auxiliary functions that interact 
with the MAX311x chip:

configTimer():

Configures timer #2 for use with the output compare module, which generates a 
CMOS clock for the MAX311x chip. The timer period is set to 9, which produces a 
square wave of frequency 1.842 MHz.

configOC():

Sets output compare module #1 to toggle whenever timer #2 hits a value of 8. The 
value of 8 is largely arbitrary; any value within the period of time #2 would be fine.

configSPI():

This function is crucial in that it sets up the appropriate SPI waveforms for 
communicating with the MAX311x chip. The waveforms are configured as
CPOL = 0, CPHA = 0 using the SPIxCON1bits.CKP and SPIxCON1bits.CKE bits.
The serial clock is configured to run at 2.5MHz using the primary and secondary 
prescalars. Framed mode is disabled and slave select is run manually using _RB2 
(digital I/O pin).

configIRQ():

Sets up external interrupt #4 to listen to the IRQ pin on the MAX311x chip. The 
interrupt is active low.
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configMaxim():

Configures the Maxim chip by sending a WriteConfig command over the SPI 
interface. The Maxim UART is configured to interrupt on both receive and transmit.
The serial format is set to 8 data bits, 1 stop bit, no parity and 38400 baud.

_INT4Interrupt():

The INT4Interrupt service routine fires whenever the Maxim chip has transmitted or 
received data. The service routine begins by determining the cause of the interrupt 
(by sending a readData request) and then handles the interrupt accordingly. Note that 
the ISR handles interrupts using the spiTransaction() helper function, which is 
blocking.

spiTransaction():

spiTransaction() performs a single SPI transfer by writing the two bytes it's given 
and returning the bytes it receives. SPI transactions are initiated by writing to the SPI  
transmit buffer, which starts the sequential transfer of bits out of the unit. Pin _RB2 
is driven low to signal the beginning of a transfer to the MAX311x chip.

initMAX311x():

This is the constructor for the abstracted UART. It takes, as its arguments, pointers to 
two CircBuffers: one that the user will use for queuing outgoing data, the other for 
reading received data.

MAX311x Hardware:

A small circuit board was designed for the MAX311x hardware after successful testing on a 
breadboard (Figure 3). The circuit board is relatively straightforward, and takes in the full set of SPI 
input signals (DIN, DOUT, SCLK, IRQ, CS), as well as a clock signal and power. Initial testing 
indicates that the PCB works well with the MAX311x library software.

The SPI and clock signals can be drawn from the daughter board attached to the Explorer16 
development board. Wires are connected as follows:

SDO1 (RF8): Red wire, connects to DIN pin on MAX311x
SDI1 (RF7): Green wire, connects to DOUT pin on MAX311x
SS1 (RB2): White wire, connects to CS pin on MAX311x
SCK1 (RF6): Red wire, connects to SCLK pin on MAX311x
INT4 (RA15): Green wire, connects to IRQ pin on MAX311x
MAX311x Clock (RD0): White wire, connects to X1 pin on MAX311x

Power (+3.3V) and ground can be drawn from a standard power supply, or from the Explorer16 
board itself. To avoid problems, ensure that the two connections share a common ground.
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Figure 3. Circuit layout for MAX311x hardware.

Conclusions and Future Work

Initial testing indicates that the FOG unit, interfaced through the dsPIC33F microcontroller, 
drifts on the order of 18 degrees per hour. Considering that the typical drift of a MEMS package is on 
the order of 200 to 300 degrees per hour, this is a considerable improvement. Future work remains in 
polishing up the MAX311x hardware, and in interfacing the remaining MIDG INS/GPS sensor. With 
the two sensors in place, processing algorithms can be written to produce improved estimates of vehicle 
position and heading.
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