
Lukin 1

A Comparison of Round-Trip Time

Estimation Algorithms

Stephanie Lukin

Loyola University Maryland

Advisor: Katia Obraczka

Gradute Students: Kerry Veenstra, Bruno Nunes

Inter-Networking Research Group

University of California, Santa Cruz

Stephanie Lukin's work was supported by the UCSC SURF-IT 2010 Research

Experiences for Undergraduates Site, NSF grant CNS-0852099, <surf-it.soe.ucsc.edu>

I. Introduction

The time it takes for a packet to traverse the internet is a difficult value to

calculate. Based upon the Round-Trip Time (RTT), a timer is set. It is initiated when the

packet is sent, and is terminated when the sender receives an acknowledgement from the

recipient indicating the packet’s completed delivery. We can reduce the amount of time

wasted during internet communication by closely estimating this travel time. The original

estimation algorithm is named after its developer Jacobson, and has been implemented

since the birth of online data transfer.

Since then, researchers have been developing their own algorithms to improve

this estimation technique. The Inter-Networking Research Group (i-NRG) at the

University of California, Santa Cruz, developed the Experts Algorithm and has shown in

preliminary trials to be about 40% more accurate than Jacobson’s algorithm. As further

research, the i-NRG team wanted to compare their algorithm to another in existence

named Eifel and developed by a team at the University of California, Berkeley and

Ericsson Research. In order to accurately test each algorithm, the i-NRG lab created a

module containing the logic for computing Jacobson, Experts, and Eifel RTT values. This

module is integrated into the Linux kernel of one of the nodes in our network testbed.

Each estimation algorithm calculates its own RTT value and then one value is used in the

kernel during runtime. With our module, we plan to run large and “famous” tests over the

network to identify the most efficient algorithm and strive towards improving calculation

techniques.

Lukin 2

II. Background

Transmission Control Protocol / Internet Protocol (TCP/IP) is a five layer

protocol suite. It defines the exchange of transmissions across the internet, with the most

important protocols being TCP and IP. The protocol most closely associated with this

project is TCP. This is the transport layer in the protocol suite and deals with a higher

level of data transportation, rather than the bits of data. In this layer, the entire packet of

information is taken into consideration. Based upon the size of this packet, a Round-Trip

Time (RTT) is estimated. This is the time required for data to go from a source to a

destination and then receive acknowledgement of the arrival.

The RTT has many applications to TCP. One of the most important is the

Retransmission Time-Out (RTO) timer. This timer is maintained with each connection,

and if the sender does not receive acknowledgement upon the expiration of the timer,

TCP will retransmit the data and restart the timer. This timer is based upon the size of the

packet. Because each packet may be a different size, the timer cannot be a fixed value

and therefore relies on an accurate estimation of the RTT.

Another application of RTT is calculating the number of retransmissions of a data

packet, which ideally is kept to zero ensuring unbroken communication. The time also

helps to measure the throughput and goodput, which are the number of transmissions sent

over the network and the number of positive transmissions acknowledged respectively.

Thus, it is extremely important that the RTT be calculated precisely to or as close to the

true value as possible.

III. Motivation

The Inter-Networking Research Group has set out to develop their own RTT

estimation algorithm which uses an on-line machine learning approach. In this way, the

RTT would better adapt to the fluctuations observed over an active network. In order to

fully validate this algorithm, the team needed to compare it to preexisting RTT estimation

algorithms. The first is Jacobson’s which is the estimation algorithm currently

implemented in TCP and has been since TCP first began in 1988. The other algorithm is

called Eifel and was developed by Reiner Ludwig and Keith Sklower in 2000 [2]. Our

study conducts a comparison of each estimation algorithm in a live environment,

examining not only the closeness of the RTT value to the measured value over the

network, but also the repercussions of a closely or poorly approximated time.

Lukin 3

IV. Implementation

 In order to test each estimation algorithm with the highest amount of precision, a

module was constructed. This module contained the logic for how each estimation

algorithm calculates the RTT value. There are two methods for conducting tests. In the

first, the module is run as a standalone program. The data is input either via a text file or

through fixed values hardcoded by the tester. In the experiments with the text file,

measured RTT’s (mRTT) are collected from previous experiments and feed into the

standalone program as input. The algorithms then attempt to predict the next value in the

log file based on the previous measurement. This method is used to validate the

correctness of the coded Eifel algorithm.

 The other testing method is a live test. In this test, the module is synchronized

with the Linux kernel of one of the nodes in the i-NRG network testbed. The module is

dynamically inserted into the kernel at runtime where the logic of how to calculate RTT

values is redirected into the loaded module. When the tests are complete, the module is

removed (figure 1).

Figure 1: Linux kernel implementation

 Every time the module is loaded into the kernel, a test set of three is computed-

one test for each algorithm. In order to ensure that the tests have as little variance as

possible, the tests are run consecutively. In each test, all three algorithms are computed

but only one is used in the computation of the data transportation over the network

(figure 2).

Lukin 4

Figure 2: RTT calculation

The integration of the module into the kernel proved to be intricate. Methods, data

types, and variables were added into the kernel code so it had knowledge of their use in

the module logic. A careful and precise importation and exportation took place for each

new addition. Once the kernel had knowledge of these additions, the kernel was rebuilt in

order to incorporate these changes. Once rebuilt, the node was rebooted with its new

logic in place. At this point, we could easily insert and remove the module in order to

perform our aforementioned live tests.

Coding the algorithms as a standalone program was as straightforward as

following the computations specified by the formulas (figures 5 – 7). At the start of this

summer, the logic for Jacobson and Experts already existed in the module. To add the

Eifel computation, it was first implemented in the standalone program. Testing was done

to ensure that the Eifel program would perform in a predicted manner. After completion

of the standalone program, the algorithm was imported into the preexisting module. In

order to integrate the standalone program with the Linux kernel, some changes in the

storage and representation of data in the standalone program needed to be made. In the

kernel space, the only numerical data type allowed is an Integer. An Integer consists of

32 bits, where each bit represents the numerical part of the number. It is important to

recognize that Integers do not store or keep track of the fractional part of a number. The

following section will address how each algorithm dealt with this integration problem.

Lukin 5

V. Three Algorithms

A. Jacobson’s Algorithm

 The calculation involves a simple four-step process requiring only two input

values and fixed weights to calculate the RTT and RTO (displayed in figure 5). Simple

arithmetic is involved: addition, subtraction, and multiplication.

Figure 5: Jacobson’s RTT Estimation Algorithm

In the Linux kernel’s implementation of RTT, which is Jacobson’s estimation

algorithm, the numbers are stored such that the left most 29 bits represent the numerical

part of the number and the 3 right most bits the fractional part, (figure 3). Because the

arithmetic in Jacobson’s algorithm is simple, it uses this 29.3 bit representation without

having to worry about any additional bit shifting or scaling, except for one: the initial

measured RTT (mRTT) value is to be shifted to the left by 3 bits (<< 3), i.e. multiplied by

2
3
.

Figure 3: Integer storage

B. Experts Framework

 The Experts Framework was developed by the i-NRG lab over the previous year

[1]. The process follows a similar overall structure to Jacobson’s but differs in steps 1 and

2 (figure 6). Some of the modified computations were so extensive that an entire

mathematics library was created to accommodate the weighted averages and exponential

operations. Although the computations are more complex than Jacobson’s algorithm, no

further bit shifting is required except for the initial mRTT value.

Lukin 6

Figure 6: Experts Framework RTT Estimation Algorithm

C. Eifel Algorithm and Fixed Point Arithmetic

The Eifel algorithm was devised by two researchers from California and Germany

[2]. There are many computational differences in this algorithm from Jacobson’s

algorithm (figure 7).

Figure 7: Eifel RTT Estimation Algorithm

The most important difference is the presence of division, and especially division

by 3. The number 1/3 cannot be represented in binary by a finite series of bits. In order to

preserve as many of the numbers to the right of the radix point as possible, we need to

move the radix point itself and store the numbers in a different way, called a shifted_t. A

shifted_t is a representation of a number such that the first 16 bits are the numerical part

and the 16 bits to the right are the fractional part. By assigning more bits to the fraction,

we ensure more precision in our calculations.

Lukin 7

Figure 4: shifted_t storage

VI. Results

When the module and synchronization with the kernel were complete, it was time

to begin testing. Two test suites were conducted: a small suite with 17 measurements and

a large suite containing 3000 measurements. Three tests were performed for each test

suite: one test implemented Jacobson’s estimation, another Experts’, and the last Eifel’s.

For each test, n measurements were performed, where n=17 for the small suite and

n=3000 for the large suite. We began our analysis of results with the small test suite

(figures 8-11). The graphs show the measured RTT of a specific data packet and the three

estimates for that data packet.

Figure 8: RTT estimation values and the measured RTT value implementing Jacobson

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10111213141516

R
TT

 v
al

u
e

number of measurements

Measured and Estimated RTT
(use Jacobson)

mrtt

jacobson

experts

eifel

Lukin 8

Figure 9: RTT estimation values and the measured RTT value implementing Experts

Figure 10: RTT estimation values and the measured RTT value implementing Eifel

It is not enough to simply look at the graphed results, especially when dealing

with a test suite as large as 3000 measurements. A metric was developed which

encapsulated the data seen in the graphs. First, the difference between the measured value

and the approximation value is taken. If this difference is a negative number, then it is an

over estimation (OE). In this situation, the approximated RTT indicates to TCP that there

is more time than necessary to send the packet, and bandwidth is wasted waiting for the

packet to be supposedly transferred. In the case where the difference is a positive number

the estimation is an under estimation (UE). The approximated RTT is lower than the

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10111213141516

R
TT

 v
al

u
e

number of measurements

Measured and Estimated RTT
(use Experts)

mrtt

jacobson

experts

eifel

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
TT

 v
al

u
e

number of measurements

Measured vs Estimated RTT
(use Eifel)

mrtt

jacobson

experts

eifel

Lukin 9

actual time the packet would have taken to be sent, so TCP thinks the packet needs to be

retransmitted when in fact it did not have to be. Bandwidth is wasted retransmitting in

this case.

The UE and OE for the small test suite are recorded in tables 1 - 3. The absolute

value has been taken for the over estimations. We see that in all three tests, Experts never

under estimates the RTT value so that it never has to retransmit the data. It is also

interesting to see that regardless of the mRTT, Experts always over estimates it by 8,

which can be seen explicitly in figures 8-10. When looking at the nonzero UE,

Jacobson’s is higher in each test than Eifel, which leads to the assumption that Eifel

better under estimates Jacobson, and while under estimating is not necessarily good, it is

reduced from the original. Examining the OE, the number seems to be significantly closer

to zero than the UE range. Still, Experts is the lowest, followed by Eifel and finally

Jacobson. From these preliminary tests, it appears that Experts is the best RTT estimator

algorithm, but many more tests and further examination must be performed before such a

statement can be declared with strong conviction.

 UE OE

Jacobson 37.83 14.56

Experts 0 8

Eifel 29.67 10.67

Table 1: Test 1, implementing Jacobson

 UE OE

Jacobson 66 9.83

Experts 0 8

Eifel 45.5 12.84

Table 2: Test 2, implementing Experts

 UE OE

Jacobson 41 8.89

Experts 0 8

Eifel 31 8.34

Table 3: Test 3, implementing Eifel

While the method for creating and analyzing the metrics has been developed, the

process has not been automated. Therefore, we were unable to examine the metrics for

the large test suite at this time. Furthermore, the repercussions of the approximated

RTT’s on the network have not been examined, such as throughput, goodput, and

congestion window.

Lukin 10

VII. Conclusion and Future Work

By the end of the summer research program, a module had been built which

incorporates and calculates all three proposed RTT estimation algorithms: Jacobson’s,

Experts Framework, and Eifel. Jacobson’s is the original RTT approximator algorithm

first incorporated into the TCP protocols; The Experts Framework was developed by the

i-NRG team over the past year which uses machine learning to compute RTT values; The

Eifel Algorithm is a unique way of computing RTT values whose technique strays from

the previously seen techniques of computation.

Due to the complex and abstract nature of the problem, preliminary testing took

place only during the final week of the research session. However, the i-NRG team now

has a fully functional module for computing three unique RTT values. In the future, they

hope to run more in depth and well known test scenarios. Furthermore the team will

observe other important metrics in data transfer such as throughput, goodput, and the

congestion window. The results of these tests will be analyzed and used to enhance the

research paper they submitted last year, seeking a publication.

VIII. References

[1] B. Nunes, K. Veenstra, W. Ballenthin, and K. Obrazcka, A Machine Learning

Approach to End-to-End Round-Trip Time Estimation and Its Application to TCP,

2009.

[2] R. Ludwig and K. Sklower, The Eifel Retransmission Timer, 2000.

