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Abstract—Sparse linear systems are found in a variety of 

scientific and engineering problems.  In VLSI CAD tools, DC 

circuit analysis creates large, sparse systems represented by 

matrices and vectors. The algorithms designed to solve these 

systems are known to be quite time consuming and many 

previous attempts have been made to parallelize them. Graphics 

cards have evolved from specialized devices into massively 

parallel, general purpose computing units. With their parallel 

architecture and SIMD processing units, they are well designed 

for high-throughput operations on large matrices. Various APIs 

have been developed to allow users to access the resources of 

their GPUs. One relatively new API, OpenCL, provides a high 

level abstraction of GPU architecture. OpenCL, with its open 

source standard and support for both CPU and GPU compute 

devices, may become a dominant framework for parallel 

computing on GPUs in the future. Here, we test an OpenCL 

implementation of a sparse linear solver for VLSI CAD tools. 

I. INTRODUCTION 

A circuit is represented by one or more voltage sources 

and the resistances of its wire connections. Circuit nodal 

analysis, a major step of DC analysis, tries to determine the 

voltage value at each node given the resistances and currents 

of the wires connecting to the node. The basis of nodal 

analysis relies on two well-known laws of electricity: 

Kirchhoff’s current law and Ohm’s law. By applying both 

laws to a branch in a circuit, a linear equation is generated 

with the nodal voltages as the unknowns. After combining 

linear equations for all branches, a linear system is created. A 

complex circuit may have nodes that number in the millions. 

Such a circuit may generate a linear system with a 

correspondingly large size.  

Considering the size of these linear systems, circuit nodal 

analysis can be a very time-intensive task for VLSI CAD tools. 

In addition, transient analysis requires DC analysis to be 

performed repeatedly as the circuit changes over time. 

Various studies have tried taking advantage of parallel 

hardware to speed up linear solvers. Such parallel 

environments include networked distributed systems [1, 2], a 

transmuter array [3], a vector supercomputer [4], and graphics 

processing units [5], [6], [7], [8], [9], [10], [11]. Since GPUs 

are rapidly growing in popularity for general purpose 

computing, our work will also focus on this approach. Several 

platforms have been developed to enable the use of the GPU 

as a general purpose compute unit for running parallel code. 

For circuit analysis, various linear solvers were created with 

successful results on the CUDA platform. However, the 

Nvidia CUDA standard, in addition to being exclusive to 

Nvidia GPUs, is lacking in many features. Therefore, our 

work will focus on the advantages of a newly released 

framework, OpenCL. The flexibility of OpenCL and its 

accessible interfaces may lead it to become a major platform 

for developing parallel applications, including VLSI desktop 

applications. 

In addition to a development platform, we must also select 

an algorithm to parallelize. Although GPUs have proven 

themselves quite effective in achieving speedup with their 

innate parallel architecture, this parallelism is mostly limited 

to data parallelism. In OpenCL, this is abstracted as a 

workgroup of work-items, which must run in lockstep to 

achieve the best performance results [12].   Sparsity is an 

important feature of matrices generated from circuit analysis. 

It presents a unique challenge because, in order to conserve 

memory, special data structures must be used to represent the 

matrices. The chosen algorithm must access and manipulate 

these special structures in an efficient way. LU-

Decomposition is a well-known algorithm that was considered 

for testing. As a slow direct solver, this algorithm appeared to 

be a good candidate for achieving speedup through 

parallelization. We have found, for example, that the single-

threaded implementation of LU in ngspice [13] would take 

hours to complete on some of our large circuit benchmarks. 

However, after attempting to create a parallel version of LU 

on the GPU and finding confirming statements in Feng’s 

research [5], we determined that the current state of 

specialized data-level parallelism of GPUs and the irregularity 

of data structures needed to hold sparse matrices prevents the 

algorithm from being practically mapped to these devices. Our 

conclusion led us to explore another popular algorithm, the 

conjugate gradient method. Broken down, the computational 

bulk of this algorithm consists of simple matrix and vector 

operations [14]. In this report, we explore the results of using 

an existing OpenCL implementation of this algorithm to reach 

our desired goal of solving sparse linear systems for circuit 

simulation.  

II. OPENCL AND VIENNACL 

Released in August 2009, OpenCL provides an API for 

parallel programming on a multitude of platforms [12].  Like 

CUDA, the OpenCL architecture has interfaces for accessing 

the computing resources of a GPU.  However, unlike its 

competitor, OpenCL supports both major GPU vendors, AMD 

and Nvidia, and also supports multi-threaded computing on 

the CPU.  With these features, OpenCL provides a framework 

that is more inclusive and flexible. 

ViennaCL is an open source linear algebra library 

developed at the Vienna University of Technology in Austria 

[15]. Taking advantage of OpenCL’s flexibility, ViennaCL 



detects computing hardware (with preference given to GPUs) 

and uses it to run its parallel implementations of linear algebra 

solvers and matrix operations. ViennaCL’s routines and data 

structures are accessed via high level C++ interfaces so that 

users do not have to worry about the intricate architecture of 

their computing devices.  Many of these interfaces are 

compatible with the Boost uBLAS interfaces that are used in 

existing applications [19]. In our work, we were able to 

integrate ViennaCL’s conjugate gradient solver into our 

existing code with relative ease.   

III. CONJUGATE GRADIENT 

CG is a well known iterative method for solving sparse 

linear systems. When the algorithm is applied to the linear 

system Ax = b, the vector x is guaranteed to converge to the 

correct solution only if the A matrix is both symmetric and 

positive definitive [14]. The circuits we are concerned with 

generate linear systems that exhibit both properties. As such, 

the use of parallelized CG for circuit analysis has been studied 

and many implementations exist for Nvidia’s CUDA [7], [8],  

[9]. To conserve memory and prevent random data accesses, 

the sparse matrices can be stored in CSR format while the 

vectors retain their zeroes. The following version of CG, taken 

from Saad’s book [18], is used in ViennaCL.  

 

Algorithm 1 Conjugate Gradient 

Initialize:  x0 = 0, r0 = b, p0 = r0, ip_rr = inner_prod(r0, r0) 

   1:  for all j such that 1 ≤ j ≤ N do      

   2:     tmp = matrix_vector_multiply(A, pj)  

   3:     α = ip_rr / inner_prod(tmp, pj)  

   4:     xj+1 = xj + α * pj  

   5:     rj+1 = rj – α * tmp 

   6.     new_ip_rr = inner_prod(rj+1, rj+1) 

   7:     β = new_ip_rr / ip_rr  

   8.     ip_rr = new_ip_rr 

   9:     pj+1 = rj+1 + β * pj  

   10: end for 

 
    The maximum number of iterations N is specified by the 

user. Increasing the number of iterations may lead to a more 

accurate solution at the cost of performance. The primary 

computations of the algorithm are in lines 2-6 and line 9; they 

consist of matrix-vector multiplication, vector inner products, 

and scalar multiplication. Parallelizing each of these 

operations on a GPU is fairly straightforward. Studies have 

already been done on optimized matrix-vector multiplication 

on the GPU [16]. In these operations, accesses and 

modifications to matrix and vector elements occur 

independently and can run as separate, parallel threads in a 

SIMD fashion on the GPU. As indicated, the algorithm is 

easily dissected into parallelizable routines. This 

implementation allows for the parallel portions of the code to 

be decoupled and optimized separately. 

 

IV. RESULTS 

A. Performance 

A single-threaded implementation of CG and ViennaCL’s 

implementation of CG were both tested on a set of large 

industry power grid circuits [17]. A few of these benchmarks 

have well over a million nodes. Single-threaded CG was 

tested only on an Intel Core 2 Duo processor, while the 

parallel implementation was also tested on an AMD Athlon II 

x4, a Nvidia GTS 250 GPU, and a Nvidia Tesla C2050.   The 

results are indicated in Table 1 and Fig. 1. In all benchmarks 

other than ibmpg1, ViennaCL’s parallel implementation 

showed significant improvement over the single-threaded 

implementation.  The GTS 250 showed a good performance 

gain with a speedup of nearly a factor of 4 on most of the 

benchmarks. The Core 2 Duo and Athlon II, despite only 

having 2 and 4 cores, respectively, still performed well.  This 

is due to the higher clocks of the CPUs, with the Athlon II 

clocked at 2.9 Ghz. It is also important to note that the parallel 

code in ViennaCL is not yet optimized for the memory layout 

of GPUs. Although powerful, the Tesla GPU is a non-

consumer device. Despite being fully expected to perform 

well, its results still highlight the potential high performance 

gains from a GPU. As a final note, a significant portion of the 

measured times were not actually spent on executing CG. 

When our GPUs were tested for performance enhancement, 

the overhead of memory transfers to the devices could not be 

ignored. 

B. Error 

Each benchmark was tested with 1500 iterations of CG. 

Table 2 shows the average and maximum amounts of error for 

the solutions computed by the singled-threaded and parallel 

implementations of CG. The parallel implementation on the 

GPU does not magnify the error by a significant amount. Also, 

while increasing the number of iterations of CG does reduce 

the error, we found that the amount of error reduction quickly 

decreased as iterations were increased. 

V. FUTURE WORK 

At the time of this writing, ViennaCL is still in the alpha 

phase of its release. While the library’s interfaces are adequate, 

many features are missing and the internal matrix algorithms 

are far from optimal. The current implementation of CG fails 

to take advantage of shared local memory on the GPU 

architecture, which has the potential to be as fast as registers 

[12]. The next release, version 1.1, will likely address these 

issues. 

Extra steps can also be taken to help CG, an iterative 

method, converge to a solution more quickly. The use of a 

preconditioner is an effective and commonly known way to do 

this.  Although ViennaCL’s current implementation of the CG 

preconditioner is parallel, it is unreasonably slow. Another 

factor of convergence time that can be studied is the initial 

guess of the solution vector x. ViennaCL’s current 

implementation simply zeroes x initially. Setting an initial 

guess value may be particularly useful in transient analysis 

where the linear system changes over time and must be solved  



TABLE I 

DC ANALYSIS RUNTIMES USING CONJUGATE GRADIENT. TS IS THE TIME MEASURED FOR THE SINGLE THREADED IMPLEMENTATION ON A CORE 2 DUO WHILE THE 

PARALLEL TIMES WERE MEASURED FOR A VARIETY OF DEVICES. SPD IS THE AMOUNT OF SPEEDUP FOR THE GPUS. SPEEDUP IS CALCULATED BY DIVIDING THE 

SINGLED THREADED TIME BY THE GPU TIME. EACH TIME IS A THE TOTAL OF THE ANALYSIS TIMES FOR GND AND VDD. 

Circuit Size TS TCore2 TAthlonII TGTS250 TTesla SpdGTS250 SpdTesla 

ibmpg1 30638 4.5 4.3 5.5 4.7 3.7 0.9X 1.2X 

ibmpg2 127238 35 15 16 13 8 2.7X 4.4X 

ibmpg3 851584 88 35 31 26 16 3.4X 5.5X 

ibmpg4 953583 262 111 79 67 42 3.9X 6.2X 

ibmpg5 1079310 154 63 48 42 27 3.7X 5.7X 

ibmpg6 1670494 241 97 69 63 40 3.8X 6.0X 

 

 

 

 

 

Fig. 1. Computation times of CG 
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TABLE 2 

ERROR OF CONJUGATE GRADIENT.  THE MAXIMUM AND AVERAGE ERROR ARE SHOWN FOR BOTH THE SINGLE THREADED AND PARALLEL IMPLEMENTATIONS. 

THE FORMAT IS GND/VDD. ERROR IS CALCULATED BY SUBTRACTING THE EXPERIMENTAL SOLUTIONS FROM THE EXACT SOLUTIONS OBTAINED FROM A DIRECT 

SOLVER. A “?” INDICATES THAT THE DIRECT SOLVER RAN OUT OF MEMORY FOR THE BENCHMARK AND WAS UNABLE TO PRODUCE A SOLUTION. 

Circuit Single Thread Eavg  Single Thread Emax  Parallel Eavg  Parallel Emax  

ibmpg1 0/0 0/0 0/0 0/0 

ibmpg2 0/0 0/1 0/0 0/1 

ibmpg3 2/4 19/37 3/6 22/36 

ibmpg4 3/? 4/? 3/? 4/? 

ibmpg5 0/82 1/337 0/101 1/393 

ibmpg6 2/? 10/? 2/? 11/? 

 

 

repeatedly. An initial guess for the current system can be 

made based on the previous state. 

Finally, more algorithms can be added to ViennaCL’s 

linear algebra collection, including ones known to work well 

for circuits. For instance, the CUDA implementation of the 

multigrid method has shown great success in quickly solving 

linear systems generated by power grid circuits [5]. Such 

algorithms can be added to the internals of ViennaCL without 

compromising the convenient high level interfaces. 

VI. CONCLUSION 

In our study, we sought a GPU implementation of a linear 

solver for use in circuit simulation. We wanted to test the new 

framework, OpenCL, and the advantages it would have over 

CUDA. ViennaCL allowed us to take advantage of OpenCL’s 

flexibility by using it as a black-box solver that was easily 

integrated into our existing interfaces. Despite its generic 

nature, ViennaCL’s implementation of CG provided a 

significant amount of performance enhancement. In addition, 

it also highlighted the increasing accessibility of high 

performance computing without the need for a supercomputer 

or other special devices.  Because of their convenient 

interfaces and success in improving performance, OpenCL 

and ViennaCL are viable tools for adding parallelism to 

existing VLSI CAD tools.   
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