
OpenCL Sparse Linear Solver for Circuit Simulation
 Jason Mak Matthew Guthaus

California Polytechnic State University University of California, Santa Cruz

San Luis Obispo, CA Santa Cruz, CA

jamak@calpoly.edu

mrg@soe.ucsc.edu

Abstract—Sparse linear systems are found in a variety of

scientific and engineering problems. In VLSI CAD tools, DC

circuit analysis creates large, sparse systems represented by

matrices and vectors. The algorithms designed to solve these

systems are known to be quite time consuming and many

previous attempts have been made to parallelize them. Graphics

cards have evolved from specialized devices into massively

parallel, general purpose computing units. With their parallel

architecture and SIMD processing units, they are well designed

for high-throughput operations on large matrices. Various APIs

have been developed to allow users to access the resources of

their GPUs. One relatively new API, OpenCL, provides a high

level abstraction of GPU architecture. OpenCL, with its open

source standard and support for both CPU and GPU compute

devices, may become a dominant framework for parallel

computing on GPUs in the future. Here, we test an OpenCL

implementation of a sparse linear solver for VLSI CAD tools.

I. INTRODUCTION

A circuit is represented by one or more voltage sources

and the resistances of its wire connections. Circuit nodal

analysis, a major step of DC analysis, tries to determine the

voltage value at each node given the resistances and currents

of the wires connecting to the node. The basis of nodal

analysis relies on two well-known laws of electricity:

Kirchhoff’s current law and Ohm’s law. By applying both

laws to a branch in a circuit, a linear equation is generated

with the nodal voltages as the unknowns. After combining

linear equations for all branches, a linear system is created. A

complex circuit may have nodes that number in the millions.

Such a circuit may generate a linear system with a

correspondingly large size.

Considering the size of these linear systems, circuit nodal

analysis can be a very time-intensive task for VLSI CAD tools.

In addition, transient analysis requires DC analysis to be

performed repeatedly as the circuit changes over time.

Various studies have tried taking advantage of parallel

hardware to speed up linear solvers. Such parallel

environments include networked distributed systems [1, 2], a

transmuter array [3], a vector supercomputer [4], and graphics

processing units [5], [6], [7], [8], [9], [10], [11]. Since GPUs

are rapidly growing in popularity for general purpose

computing, our work will also focus on this approach. Several

platforms have been developed to enable the use of the GPU

as a general purpose compute unit for running parallel code.

For circuit analysis, various linear solvers were created with

successful results on the CUDA platform. However, the

Nvidia CUDA standard, in addition to being exclusive to

Nvidia GPUs, is lacking in many features. Therefore, our

work will focus on the advantages of a newly released

framework, OpenCL. The flexibility of OpenCL and its

accessible interfaces may lead it to become a major platform

for developing parallel applications, including VLSI desktop

applications.

In addition to a development platform, we must also select

an algorithm to parallelize. Although GPUs have proven

themselves quite effective in achieving speedup with their

innate parallel architecture, this parallelism is mostly limited

to data parallelism. In OpenCL, this is abstracted as a

workgroup of work-items, which must run in lockstep to

achieve the best performance results [12]. Sparsity is an

important feature of matrices generated from circuit analysis.

It presents a unique challenge because, in order to conserve

memory, special data structures must be used to represent the

matrices. The chosen algorithm must access and manipulate

these special structures in an efficient way. LU-

Decomposition is a well-known algorithm that was considered

for testing. As a slow direct solver, this algorithm appeared to

be a good candidate for achieving speedup through

parallelization. We have found, for example, that the single-

threaded implementation of LU in ngspice [13] would take

hours to complete on some of our large circuit benchmarks.

However, after attempting to create a parallel version of LU

on the GPU and finding confirming statements in Feng’s

research [5], we determined that the current state of

specialized data-level parallelism of GPUs and the irregularity

of data structures needed to hold sparse matrices prevents the

algorithm from being practically mapped to these devices. Our

conclusion led us to explore another popular algorithm, the

conjugate gradient method. Broken down, the computational

bulk of this algorithm consists of simple matrix and vector

operations [14]. In this report, we explore the results of using

an existing OpenCL implementation of this algorithm to reach

our desired goal of solving sparse linear systems for circuit

simulation.

II. OPENCL AND VIENNACL

Released in August 2009, OpenCL provides an API for

parallel programming on a multitude of platforms [12]. Like

CUDA, the OpenCL architecture has interfaces for accessing

the computing resources of a GPU. However, unlike its

competitor, OpenCL supports both major GPU vendors, AMD

and Nvidia, and also supports multi-threaded computing on

the CPU. With these features, OpenCL provides a framework

that is more inclusive and flexible.

ViennaCL is an open source linear algebra library

developed at the Vienna University of Technology in Austria

[15]. Taking advantage of OpenCL’s flexibility, ViennaCL

detects computing hardware (with preference given to GPUs)

and uses it to run its parallel implementations of linear algebra

solvers and matrix operations. ViennaCL’s routines and data

structures are accessed via high level C++ interfaces so that

users do not have to worry about the intricate architecture of

their computing devices. Many of these interfaces are

compatible with the Boost uBLAS interfaces that are used in

existing applications [19]. In our work, we were able to

integrate ViennaCL’s conjugate gradient solver into our

existing code with relative ease.

III. CONJUGATE GRADIENT

CG is a well known iterative method for solving sparse

linear systems. When the algorithm is applied to the linear

system Ax = b, the vector x is guaranteed to converge to the

correct solution only if the A matrix is both symmetric and

positive definitive [14]. The circuits we are concerned with

generate linear systems that exhibit both properties. As such,

the use of parallelized CG for circuit analysis has been studied

and many implementations exist for Nvidia’s CUDA [7], [8],

[9]. To conserve memory and prevent random data accesses,

the sparse matrices can be stored in CSR format while the

vectors retain their zeroes. The following version of CG, taken

from Saad’s book [18], is used in ViennaCL.

Algorithm 1 Conjugate Gradient

Initialize: x0 = 0, r0 = b, p0 = r0, ip_rr = inner_prod(r0, r0)

 1: for all j such that 1 ≤ j ≤ N do

 2: tmp = matrix_vector_multiply(A, pj)

 3: α = ip_rr / inner_prod(tmp, pj)

 4: xj+1 = xj + α * pj

 5: rj+1 = rj – α * tmp

 6. new_ip_rr = inner_prod(rj+1, rj+1)

 7: β = new_ip_rr / ip_rr

 8. ip_rr = new_ip_rr

 9: pj+1 = rj+1 + β * pj

 10: end for

 The maximum number of iterations N is specified by the

user. Increasing the number of iterations may lead to a more

accurate solution at the cost of performance. The primary

computations of the algorithm are in lines 2-6 and line 9; they

consist of matrix-vector multiplication, vector inner products,

and scalar multiplication. Parallelizing each of these

operations on a GPU is fairly straightforward. Studies have

already been done on optimized matrix-vector multiplication

on the GPU [16]. In these operations, accesses and

modifications to matrix and vector elements occur

independently and can run as separate, parallel threads in a

SIMD fashion on the GPU. As indicated, the algorithm is

easily dissected into parallelizable routines. This

implementation allows for the parallel portions of the code to

be decoupled and optimized separately.

IV. RESULTS

A. Performance

A single-threaded implementation of CG and ViennaCL’s

implementation of CG were both tested on a set of large

industry power grid circuits [17]. A few of these benchmarks

have well over a million nodes. Single-threaded CG was

tested only on an Intel Core 2 Duo processor, while the

parallel implementation was also tested on an AMD Athlon II

x4, a Nvidia GTS 250 GPU, and a Nvidia Tesla C2050. The

results are indicated in Table 1 and Fig. 1. In all benchmarks

other than ibmpg1, ViennaCL’s parallel implementation

showed significant improvement over the single-threaded

implementation. The GTS 250 showed a good performance

gain with a speedup of nearly a factor of 4 on most of the

benchmarks. The Core 2 Duo and Athlon II, despite only

having 2 and 4 cores, respectively, still performed well. This

is due to the higher clocks of the CPUs, with the Athlon II

clocked at 2.9 Ghz. It is also important to note that the parallel

code in ViennaCL is not yet optimized for the memory layout

of GPUs. Although powerful, the Tesla GPU is a non-

consumer device. Despite being fully expected to perform

well, its results still highlight the potential high performance

gains from a GPU. As a final note, a significant portion of the

measured times were not actually spent on executing CG.

When our GPUs were tested for performance enhancement,

the overhead of memory transfers to the devices could not be

ignored.

B. Error

Each benchmark was tested with 1500 iterations of CG.

Table 2 shows the average and maximum amounts of error for

the solutions computed by the singled-threaded and parallel

implementations of CG. The parallel implementation on the

GPU does not magnify the error by a significant amount. Also,

while increasing the number of iterations of CG does reduce

the error, we found that the amount of error reduction quickly

decreased as iterations were increased.

V. FUTURE WORK

At the time of this writing, ViennaCL is still in the alpha

phase of its release. While the library’s interfaces are adequate,

many features are missing and the internal matrix algorithms

are far from optimal. The current implementation of CG fails

to take advantage of shared local memory on the GPU

architecture, which has the potential to be as fast as registers

[12]. The next release, version 1.1, will likely address these

issues.

Extra steps can also be taken to help CG, an iterative

method, converge to a solution more quickly. The use of a

preconditioner is an effective and commonly known way to do

this. Although ViennaCL’s current implementation of the CG

preconditioner is parallel, it is unreasonably slow. Another

factor of convergence time that can be studied is the initial

guess of the solution vector x. ViennaCL’s current

implementation simply zeroes x initially. Setting an initial

guess value may be particularly useful in transient analysis

where the linear system changes over time and must be solved

TABLE I

DC ANALYSIS RUNTIMES USING CONJUGATE GRADIENT. TS IS THE TIME MEASURED FOR THE SINGLE THREADED IMPLEMENTATION ON A CORE 2 DUO WHILE THE

PARALLEL TIMES WERE MEASURED FOR A VARIETY OF DEVICES. SPD IS THE AMOUNT OF SPEEDUP FOR THE GPUS. SPEEDUP IS CALCULATED BY DIVIDING THE

SINGLED THREADED TIME BY THE GPU TIME. EACH TIME IS A THE TOTAL OF THE ANALYSIS TIMES FOR GND AND VDD.

Circuit Size TS TCore2 TAthlonII TGTS250 TTesla SpdGTS250 SpdTesla

ibmpg1 30638 4.5 4.3 5.5 4.7 3.7 0.9X 1.2X

ibmpg2 127238 35 15 16 13 8 2.7X 4.4X

ibmpg3 851584 88 35 31 26 16 3.4X 5.5X

ibmpg4 953583 262 111 79 67 42 3.9X 6.2X

ibmpg5 1079310 154 63 48 42 27 3.7X 5.7X

ibmpg6 1670494 241 97 69 63 40 3.8X 6.0X

Fig. 1. Computation times of CG

0

50

100

150

200

250

300

ibmpg1 ibmpg2 ibmpg3 ibmpg4 ibmpg5 ibmpg6

T
im

e
(s

)

IBM Power Grid Benchmarks

Single Threaded Core 2 Duo ViennaCL Core 2 Duo ViennaCL Athlon II Quad

ViennaCL Nvidia GTS 250 ViennaCL Nvidia Tesla C2050

TABLE 2

ERROR OF CONJUGATE GRADIENT. THE MAXIMUM AND AVERAGE ERROR ARE SHOWN FOR BOTH THE SINGLE THREADED AND PARALLEL IMPLEMENTATIONS.

THE FORMAT IS GND/VDD. ERROR IS CALCULATED BY SUBTRACTING THE EXPERIMENTAL SOLUTIONS FROM THE EXACT SOLUTIONS OBTAINED FROM A DIRECT

SOLVER. A “?” INDICATES THAT THE DIRECT SOLVER RAN OUT OF MEMORY FOR THE BENCHMARK AND WAS UNABLE TO PRODUCE A SOLUTION.

Circuit Single Thread Eavg Single Thread Emax Parallel Eavg Parallel Emax

ibmpg1 0/0 0/0 0/0 0/0

ibmpg2 0/0 0/1 0/0 0/1

ibmpg3 2/4 19/37 3/6 22/36

ibmpg4 3/? 4/? 3/? 4/?

ibmpg5 0/82 1/337 0/101 1/393

ibmpg6 2/? 10/? 2/? 11/?

repeatedly. An initial guess for the current system can be

made based on the previous state.

Finally, more algorithms can be added to ViennaCL’s

linear algebra collection, including ones known to work well

for circuits. For instance, the CUDA implementation of the

multigrid method has shown great success in quickly solving

linear systems generated by power grid circuits [5]. Such

algorithms can be added to the internals of ViennaCL without

compromising the convenient high level interfaces.

VI. CONCLUSION

In our study, we sought a GPU implementation of a linear

solver for use in circuit simulation. We wanted to test the new

framework, OpenCL, and the advantages it would have over

CUDA. ViennaCL allowed us to take advantage of OpenCL’s

flexibility by using it as a black-box solver that was easily

integrated into our existing interfaces. Despite its generic

nature, ViennaCL’s implementation of CG provided a

significant amount of performance enhancement. In addition,

it also highlighted the increasing accessibility of high

performance computing without the need for a supercomputer

or other special devices. Because of their convenient

interfaces and success in improving performance, OpenCL

and ViennaCL are viable tools for adding parallelism to

existing VLSI CAD tools.

ACKNOWLEDGEMENT

This work was supported by the UCSC SURF-IT 2010

Research Experiences for Undergraduates Site, NSF grant

CNS-0852099, <surf-it.soe.ucsc.edu>. We would also like to

acknowledge the members of the VLSI-DA group at UCSC

for their guidance and support. Last but not least, we would

like to thank the staff and faculty at UCSC who contributed to

the SURF-IT program.

REFERENCES

[1] K. Shen. Parallel sparse lu factorization on second-class message

passing platforms. In ICS ’05: Proceedings of the 19th annual

international conference on Supercomputing, pages 351–360, New
York, NY, USA, 2005.

[2] G. Trivedi, M. P. Desai, H. Narayanan. Parallelization of DC Analysis

through multiport decomposition. In 20th International Conference on
VLSI Design, 2007.

[3] A. Mahmood, Y. Chu, and T. Sobh. Parallel sparse-matrix solution

for direct circuit simulation on a transputer array. IEE poc. Circuits
Devices Syst., vol. 144, pp. 335-342, December 1996.

[4] P. Sadayappan and V. Visvanathan. Efficient sparse matrix

factorization for circuit simulation on vector supercomputers. IEEE
Trans. CAD, vol. 8, no. 12, pp. 1276-1285, Dec. 1989.

[5] Z. Feng and P. Li. Multigrid on GPU: tackling power grid analysis on

parallel SIMT platforms. In Proceedings of the ACM/IEEE ICCAD,
2008.

[6] N. Galoppo, N. K. Govindaraju, M. Henson, and D. Manocha. LU-

GPU: Efficient algorithms for solving dense linear systems on graphics
hardware. Proc. ACM SC, 22(3):917–924, 2005.

[7] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder. Sparse matrix solvers

on the GPU: conjugate gradients and multigrid. ACM Trans. on
Graphics, 22(3):917–924, 2003.

[8] W. Rodrigues, F. Guyomarch, Y. Le Menach, J. Dekeyser.

Parallel sparse matrix solver on the GPU applied to simulation of
electrical machines. Compumag 2009 Florianopolis Bresil, 11-2009.

[9] L. Buatois, G. Caumon, and Bruno Levy. Concurrent number cruncher:

An efficient sparse linear solver on the GPU. HPCC, LNCS, pages
358–371, 2008.

[10] V. Volkov and J. Demmel, LU, QR and Cholesky factorizations using

vector capabilities of GPUs. Tech. Report UCB/EECS-2008-49, EECS
Department, University of California, Berkeley, May 2008.

[11] M. Wang, H. Klie, M. Parashar, and H. Sudan. Solving sparse linear

systems on NVIDIA Tesla GPUs. In Proceedings of the 9th
international Conference on Computational Science: Part I, Baton

Rouge, LA, May 25 - 27, 2009.

[12] OpenCL Tutorials.
http://www.macresearch.org/opencl, 2010.

[13] Ngspice circuit simulator release 21.
http://ngspice.sourceforge.net/, 2010.

[14] J. R. Shewchuk. An introduction to the conjugate gradient method

without the agonizing pain. Carnegie Mellon University, Pittsburgh,
PA, 1994.

[15] ViennaCL version 1.0.5.

http://viennacl.sourceforge.net/, 2010.

[16] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication

on CUDA. In NVIDIA Technical Report NVR-2008-004, December

2008.
[17] IBM power grid benchmarks. http://dropzone.tamu.edu/pli/pgbench/.

[18] Y. Saad. Iterative methods for sparse linear systems. Pacific Grove,

California: PWS publishing, 1996.
[19] Boost Linear Algebra C++ Libraries

http://www.boost.org/

