CLIP: A Compact, Load-balancing Index Placement Function
Michael McThrow Carlos Maltzahn Neoklis Polyzotis Scott Brandt
Storage Systems Research Center at the University of California, Santa Cruz
http://ssrc.cse.ucsc.edu

Introduction:
• The petabyte-scale distributed storage system Ceph pseudo-randomly places data on up to 10,000s of object storage devices (OSDs) using a compact function (CRUSH)
• Compactness of CRUSH essential for scalability
• Search in Ceph requires the maintenance of large indices with a very skewed update load profile (Zipf-like distribution).
• How to extend CRUSH so it can handle skewed update profiles while keeping it compact?

Approach:
• Split frequently updated parts of index across multiple OSDs, randomly select one of these for each update, and read all of these for queries.
• CRUSH maps a value to a deterministic sequence of OSDs: (term, k) → (OSD₁, ..., OSDₖ)
• Determine k based on relative term (update) frequency and total number of OSDs
• Need compact representation of term frequency distributions of 100,000s of terms.
• Idea: only keep track of terms with frequencies that lead to k > 1.
• How many terms?

Results:
• Fitted power function to relative term frequency distribution based on Gutenberg Project 2006 DVD:
 \[\text{relative_freq} \approx 0.2327 \times \text{rank}^{-1.1292} \]
• The estimated rank₁ at which k ≤ 1 for a given total number of OSDs:
 \[\text{rank₁} \approx \left(\frac{1}{0.2327 \times \text{totalOSDs}} \right)^{-1/1.1292} \]
• Linear approximation:
 \[\text{rank₁} \approx 7-8\% \text{ of total number of OSDs} \]

Conclusions
• Even in very large systems only a relatively small number of terms require more than one OSD
• Storing those terms and their relative frequencies still leads to a compact placement function
• Initial approach: use Bloom filters to categorize terms by their frequency.
 • Unnecessary and too expensive (time and space) due to small number of terms
 • False positives can lead to significant communication overhead
• Future work:
 • Verify that CLIP balances load.
 • Integrate CLIP into Ceph

This work was completed as part of UCSC’s SURF-IT summer undergraduate research program, an NSF CISE REU Site. This material is based upon work supported by the National Science Foundation under Grant No. CCF-0552688 and CCF-0621534.