CLIP: A Compact, Load-balancing Index Placement Function Michael McThrow
 Carlos Maltzahn
 Neoklis Polyzotis
 Scott Brandt

Storage Systems Research Center at the University of California, Santa Cruz http://ssrc.cse.ucsc.edu

Introduction:

- The petabyte-scale distributed storage system Ceph pseudo-randomly places data on up to 10,000 s of object storage devices (OSDs) using a compact function (CRUSH)
- Compactness of CRUSH essential for scalability
- Search in Ceph requires the maintenance of large indices with a very skewed update load profile (Zipf-like distribution).
- How to extend CRUSH so it can handle skewed update profiles while keeping it compact?

Approach:

- Split frequently updated parts of index across multiple OSDs, randomly select one of these for each update, and read all of these for queries.
- CRUSH maps a value to a deterministic sequence of OSDs:

$$
(\text { term }, \mathrm{k}) \rightarrow\left(\mathrm{OSD}_{1}, \ldots, \mathrm{OSD}_{\mathrm{k}}\right)
$$

- Determine k based on relative term (update) frequency and total number of OSDs
- Need compact representation of term frequency distributions of 100,000 s of terms.
- Idea: only keep track of terms with frequencies that lead to $k>1$.
- How many terms?

Rank
Term frequency distribution and fitted power function

Estimating number of terms that map to multiple OSDs

Results:

- Fitted power function to relative term frequency distribution based on Gutenberg Project 2006 DVD:
relative_freq ≈ 0.2327 rank -1.1292
- The estimated rank ${ }_{1}$ at which $k \leq 1$ for a given total number of OSDs:
1/totalOSDs ≈ 0.2327 rank $_{1}{ }^{-1.1292}$ rank $_{1} \approx(1 /(0.2327 \text { totalOSDs }))^{-1 / 1.1292}$
- Linear approximation: rank $_{1} \approx 7-8 \%$ of total number of OSDs

Conclusions

- Even in very large systems only a relatively small number of terms require more than one OSD
- Storing those terms and their relative frequencies still leads to a compact placement function
- Initial approach: use Bloom filters to categorize terms by their frequency.
- Unnecessary and too expensive (time and space) due to small number of terms
- False positives can lead to significant communication overhead
- Future work:
- Verify that CLIP balances load.
- Integrate CLIP into Ceph

