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Abstract

Existing file searching tools do not have the performance or accuracy that search engines have. This is es-
pecially a problem in large-scale distributed file systems, where better-performing file searching tools are much
needed for enterprise-level systems. Search engines use inverted indices to store terms and other metadata. Al-
though some desktop file searching tools use indices to store file metadata, they are not designed for large-scale
distributed file systems. We propose bringing inverted indices to the distributed object-based file system named
Ceph via CLIP: a compact load-balancing index placement function that distributes the inverted index across the
file system. The inverted index is distributed based on the frequency of terms of the files in the file system.

1. Introduction

File searching, especially in large-scale file systems, is slow and gives inaccurate results. Compared to searching
for web pages on the World Wide Web, file searching offers neither the accuracy nor the performance that search
engines have. There are some key differences between searching for web pages and searching for files, which
explains why web searching provides greater performance and more accurate results than file searching. First,
web pages typically link to other web pages, whereas file systems typically do not support such a relationship
between files, although there has been research in bringing such support to file systems [1, 7, 8, 9]. Secondly,
the number of documents for a relevant query in a web search is much larger than the number of files in a file
search, which usually corresponds to just one file. Because of the much smaller number of relevant documents,
file searching needs to be more exact than web searching.

One reason why search engines perform well is the use of inverted indices. Rather than traversing the Web to
search for a query, search engines search the inverted index. An inverted index is a data structure that consists of
terms, the frequency of those terms, references to the web pages that specific terms are stored in, and the position
of specific terms in those web pages [12]. Documents are weighted based on the amount of terms per document,
and terms are weighted based on the amount of times they appear per document and the amount of documents that
they appear. Given a query q that consists of t terms, the top r matching documents are ranked according to the
weights [12]. Zobel and Moffat provide a wealth of further information about inverted indices [12].

We shall turn away from file searching for a moment and discuss the Ceph file system. Ceph is a petabyte-scale
distributed file system developed by the Storage Systems Research Center that consists of object storage devices
(OSDs). An OSD consists of a processor, memory, and a hard disk. Ceph pseudo-randomly places data across
OSDs using the CRUSH algorithm [10]. CRUSH is a “scalable pseudo-random data distribution function designed
for distributed object-based storage systems that efficiently maps data objects to storage devices without relying
on a central directory” [11]. CRUSH is compact, which turns out to be essential for the scalability of Ceph [11].



Since we want to improve the performance of file searching in Ceph and to improve the quality of our searching
results, we propose using an inverted index for searching. We want the inverted index (which will be known as
simply the index through the rest of the paper) to be distributed evenly across the OSDs such that specific OSDs are
not overloaded with queries containing very popular terms. We know that search queries are skewed in a Zipf-like
distribution. Because certain terms are more popular than others, we want to distribute the index such that the load
of terms is balanced across the OSDs based on the term’s frequency.

We introduce CLIP, a compact load-balancing index placement function. CLIP is an extension of CRUSH that
handles skewed update profiles while retaining its compactness. CLIP does not require storing large data structures
containing the entire distribution of terms. Instead, a power function is produced from the distribution of terms,
and a small data structure maps these terms to their corresponding k value given a rank r, based on the power
function. Based on the frequency of a term, CLIP computes how many OSDs are needed to store that term, in
order to balance the load.

The rest of the paper is structured as follows. Section 2 describes work related to CLIP. Section 3 further
describes the problem of distributing the index across the OSDs. Section 4 describes how CLIP works. Section 5
shows the results of our work, and Section 6 provides a conclusion of our research results, as well as our future
work.

2. Related Work

There are file searching tools designed for personal computers, such as Google Desktop and Apple Spotlight,
that maintain an index of hard disks and return a ranked list of files that match a query [2, 5]. These tools perform
much greater than file searching tools that traverse the directory tree. However, the key issue to applying such
tools to Ceph is that these tools are not scalable and are not designed for distributed, petabyte-scale file systems.

There is an effort to make file searching more contextual rather than based solely on content. Soules and Ganger
proposed adding extensions to file systems containing metadata from applications and inter-file relationships [8].
They built a file searching tool called Connections, that uses temporal locality to infer relationships between files
[9]. Shah et al. extended this work by adding information about the provenance of a file, and by using causality
instead of temporal locality to contextually search for files [7].

3. Problem

In order to understand how the update stream is skewed, we need to describe Zipf’s law and Zipf distributions.
Zipf’s law is an observation named after linguist George Kingsley Zipf that determines the frequency of specific
words in an English text [6]. Given the rank r of a word, Zipf’s law states that the frequency of the word is
inversely proportional to r:

fi ∝
1
iα

(r = 1, . . . ,N)

where f is the frequency of the term, α ≈ 1, and N is the total number of words in the corpus [6]. According to
this law, the most common word occurs twice as often as the second common word, the second most common
word occurs twice as often as the third most common word, and continues until the least common word is reached.

A Zipf distribution is defined as “a set of values that follows Zipf’s law” [6]. The distribution function for a
Zipf distribution is

fi =
K
iα

where K is the frequency of the most popular term, and α is the relative popularity of terms in the distribution [6].
When graphing a Zipf distribution on a log-log scale, the graph appears linear. This means that there are few terms
that occur often, and there is a large amount of terms that occur rarely.
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Knowing that the update stream is skewed in a Zipf-like distribution, the problem is how to load-balance the
update stream across the OSDs such that each OSD is not overloaded with popular terms. Since it is essential
for Ceph’s scalability that any data allocation function is compact, we need to make sure than an index allocation
function is compact as well. We could think of two approaches: using a B-tree over fixed-sized objects, and by
using a hash function to assign terms to OSDs. B-trees use efficient splitting and joining operations to keep the
paths to each leaf at approximately equal length. We think that B-tree mechanisms can be adapted to provide
additional balancing in terms of index updates. The hash function approach uses CRUSH to assign terms to OSDs.
We ultimately decided to pursue load-balancing via a hash function, which is further described in Section 4.

4. Approach

4.1. Dividing the Index

Since certain terms are more popular than others due to Zipf’s law, the index needs to be divided across the
OSDs such that individual OSDs are not overloaded with queries containing very popular terms. Given a term
and a value k, which is based on the relative term (update) frequency and the total number of OSDs in the file
system, CRUSH maps (term,k) to a set of OSDs {OSD1, . . . ,OSDk}. Popular terms will have a relatively large
value of k, while k = 1 for rare values, which conforms to Zipf’s law. The term is then randomly assigned to an
OSD within that set. To find a specific term in the file system, the set of OSDs that map to that term are queried.
This assignment of terms to OSDs is illustrated in Figure 1.
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Figure 1. Routing of updates and queries to OSDs

4.2. Keeping Track of Terms

One problem is storing the distribution of terms so that essential values such as k can be calculated. Mapping
each term to its k value is expensive and would destroy the compactness of the index placement function. We
want to categorize terms based on k and only store the Bloom filters instead of all terms. Our approach was to use
Bloom filters to categorize terms based on k.

4.2.1. Categorization with Bloom Filters The National Institute of Standards and Technology’s Dictionary
of Algorithms and Data Structures defines a Bloom filter as “a probabilistic algorithm to quickly test membership
in a large set using multiple hash functions into a single array of bits” [3]. Because Bloom filters are probabilistic,
this means that there is a risk of obtaining false positives in membership tests. The probability of a false positive
occurring is (

1−
(

1− 1
m

)βn
)β

≈
(

1− eβn/m
)β
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where m is the size of the bit array (in bits), n is the number of members in the Bloom filter, and β is the amount
of hash functions [4]. Increasing the size of the bit array m, as well as increasing the amount of hash functions β ,
decreases the probability of a false positive occurring, but also increases the amount of computation required [4].

For large sets of data, Bloom filters are more compact than other data structures such as B-trees. To mitigate
the effects of false positives, we store the top 0.1% of the distribution in a B-tree. The rest of the distribution
from after the first 0.1% to the last entry where k > 1 is split logarithmically into s sections, each represented by a
Bloom filter. Each Bloom filter consists of terms that correspond to a specific range of k values, and each term in
that filter has an estimated length of the length of the highest ranked term in the range.

5. Results and Evaluation

5.1. Bloom Filter Results

Our experiments for our tests involving Bloom filters was implemented and evaluated on a 1.83GHz Intel Core
Duo computer with 512MB RAM running Mac OS X 10.4.9. The Python programming language was used in
our experiments, and the version of the Python interpreter used is Python 2.3.5. We used the PyBloom library, a
public-domain Bloom filter library implemented in Python.

Bloom Filters s = 3 s = 15
Bloom Filter Sizes {9,89,792} {1,1,1,1,1,1,1,1,1,1,1,1,9,89,780}

Variables m/n = 6,β = 4 m/n = 10,β = 7 m/n = 6,β = 4 m/n = 10,β = 7
False Positives {0,3,0} {0,0,0} {0,0,14,0,0,1,0,0,0,0,3,22,0,3,0} {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
Execution Time 20.608s 24.823s 45.020s 48.245s

Table 1. Results of Bloom filter experiments using Pride and Prejudice as the corpus

We ran four experiments based on the m/n ratio (see Section 4.2.1 for definitions of m and n), the number of
hash functions β , and the number of Bloom filters s. The corpus used in these experiments is from the book Pride
and Prejudice, which contains 13,699 unique words. Table 1 shows the results of these experiments. Increasing
the size of the m/n ratio, as well as increasing k, eliminates false positives. Increasing the number of Bloom filters
have a greater impact on the time it takes to complete the experiment than increasing the m/n ratio and increasing
k. However, we notice that some Bloom filters had sizes of one and nine. This is an issue, since it is a waste of
space and time to maintain a Bloom filter for a miniscule amount of terms.

Performance also became a big issue when running the much larger corpus containing all of the documents
from the Gutenberg Project 2006 DVD, which contains 690,369 unique terms. Some of these experiments took
over ten minutes to run using this corpus. The number of terms that mapped to k > 1 was still small. To figure
out how the number of terms scale with the size of the file system, we fitted the term frequency distribution (see
Figure 2) to a power function and solved it for the rank r of a term, given k = 1 (see Figure 3). This confirms
that keeping track of terms with k > 1 explicitly, i.e. extending CRUSH with a sorted data structure optimized for
looking up terms, will still keep CRUSH compact.

5.2. Power Function Evaluation

We created a power function that fits to the distribution of words in the Gutenberg Project 2006 DVD corpus.
The power function is fr ≈ 0.2327r−1.1292, where fr is the relative term frequency. Figure 2 displays the fitted
power function and the actual distribution. In order to find out how many terms map to k > 1, we need to find
out the highest rank r for which k = 1. For this we substitute 1/totalOSDs for fr and solve for r, calculating how
many terms in the distribution require multiple OSDs to be stored (i.e., when k > 1). The resulting equation is
r ≈

( 1
0.2327∗totalOSDs

)−1/1.1292. Figure 3 shows a graph of this equation. If we take a linear approximation of this
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equation, it shows that only 7-8% of the total number of terms require more than one OSD to be stored. This
result is important, because only a relatively small number of terms needs to be stored in order to create the power
function.
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Figure 2. Term frequency distribution and fitted power function
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Figure 3. Estimating number of terms that map to multiple OSDs

6. Conclusions and Future Work

Even in very large systems that consists of hundreds of thousands of OSDs, by using a power function to
approximate the distribution, only a relatively small number of terms require more than one OSD to be stored.
This result makes querying terms easy, since rare terms are mapped to just one OSD, and common terms are
mapped to a set of OSDs; queries do not have to search the entire file system. Storing the terms where k > 1 and
their relative frequencies still lead to a compact placement function.

Our approach of using Bloom filters to categorize terms by their frequency did not work for three reasons. For
one, since we developed a way to store a small data structure that maps terms to a corresponding k value, storing
Bloom filters is unnecessary and expensive both in time and space. Secondly, the amount of terms is too small for
Bloom filters to be useful. Finally, false positives can lead to significant communication overhead, since a term
would allocate more OSDs than it actually needs, making queries much slower.

We need to verify that CLIP balances the load. We also must figure out how to manage the insertion and removal
of terms in CLIP. File systems change over time, and CLIP must handle changes in the file system without major
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performance issues. After these problems are solved, CLIP will be integrated into the Ceph file system. We need
to investigate specific data structures to store the index across the OSDs, and also investigate how the distribution
will be stored.
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