Extended File System Metadata Management with Relational Databases

Michael McThrow

Storage Systems Research Center
University of California, Santa Cruz

Abstract

Modern file systems need to handle extended metadata. Ex-
isting file systems are not equipped to handle managing meta-
data in the amount of files and the diversity of files that these
file systems are now supporting. Users need better search-
ing and querying capabilities. Metadata within files still re-
main application- and file format-specific and is often propri-
etary, which makes searching difficult. We propose a file system
that combines the power and proven technology of relational
databases with the Linking File System’s (LiFS) ability to han-
dle extended metadata.

1. Introduction

Over time, file systems have dealt with multiple types of
files, such as text documents, spreadsheets, photos, music, and
movies. As file systems have to deal with a growing amount
of files and file formats, the need for file systems to manage
extended metadata has also grown. For many years, file sys-
tems didn’t have a common API for handling extended meta-
data. Because of this, applications were forced to put their file
metadata inside of the file. The problem with this approach
is that there wasn’t a common interface and common format
for extended file system metadata. File metadata was often
only accessible to the application, and the file format was usu-
ally proprietary, which made searching for files based on their
metadata difficult.

The Linking File System (LiFS), an earlier research project
(and will be known as “the existing file system” throughout the
paper when comparing it to our new research) addressed these
problems [1]. It addressed these problems by creating an file
system that supports extended file system attributes and rela-
tional links between files. Extended file system attributes are
application- or user-defined values consisting of a key and a
value [1]. For example, an MP3 file might have a key called
“Artist” and a value called “The Beatles.” Relational links also
provide a rich way of describing files. For example, to continue
using The Beatles music as an analogy, instead of organizing
all songs from the album Abbey Road in a directory, each song

can have a relational link with the other files. Relational links
also have extended attributes with keys and values. For exam-
ple, each of those relational links would have a key called “Al-
bum” and a value called “Abbey Road.” With relational links,
a user does not need to organize files in directories, although
for convenience and backwards compatibility, directories can
be emulated by creating a file of 0-byte length and setting links
to other files [1].

LiFS did a great job at handling extended file system meta-
data. However, we wanted to go further. We were very in-
terested in replacing the traditional data structures with a rela-
tional database. We want to know if relational databases are
the best way to manage extended file system metadata.

2. Motivation

There are a few key reasons why were are interested in
relational databases for extended file system metadata man-
agement. One reason is that relational databases are a well-
established and proven tool for managing data. Relational
databases have been around since 1970 [6], and relational
databases have over three decades worth of improvement and
optimization. Because data management is an important part
of the LiFS, we would like to take advantage of the advantages
and years of optimization that relational databases have to of-
fer.

Another reason why we are interested in relational
databases is because they are queryable. Instead of coding spe-
cial searching functions for relational links and attributes with
traditional file system data structures, we can use a querying
language, such as SQL, to search for extended metadata. By
making a file system queryable using relational databases and
queries, it becomes easier to search for files.

We want to know if a relational database is the best way to
manage extended file system metadata. Relational databases
are a proven technology with many capabilities such as pow-
erful querying languages. The following sections will describe
the design, implementation, and the results of our research.

supernode

di skBi t map

stringTabl e

i nodeTabl e

freeLi st

L alalieleletieleletdielietielieliefieieliefifielinfifiolielifiolieliefefelifi l ------------- 1

inode #0 inode #1 | inode #2 " inode #3 " inode #4 |

I'i nkSet
attr bset S
ext ent Set

| >] aset

inode table

Figure 1. Structure of the existing file system’s
supernode

Iset I %
| ast

first [=———==> Inode [Inode —O

src src
dest dest
attri bSet attribSet

Figure 2. Structure of a set of links

3. Design
3.1. The Existing File System

The existing file system uses native data structures opti-
mized for low latency storage class memories [1]. By the term
native data structures, we mean traditional data structures used
for file systems, such as linked lists and trees. Since the focus
of our research is about extended file system metadata man-
agement, we will only focus on the data structures used in the
existing file system that pertain to that topic. The existing file
system contains inodes, link nodes (Inodes) and extended at-
tribute nodes (anodes).

As shown in Figure 1, the file system is contained into a
large node called the supernode. The portions of the supernode
related to extended metadata management consist of a linked
list of inodes and a table of strings used to eliminate duplicate
copies of strings when used to search for extended attributes
[1]. Each inode consists of traditional inode data determined
by the POSIX file system specification, as well as a linked list
of Inodes and anodes. As shown in Figure 2, each Inode con-
sists of a source inode, a destination inode, and a linked list
of anodes. Figure 3 shows a linked list of anodes. Each an-
ode contains a key and a value, both pointers to the string table
entry for those values [1].

Several new file system calls were created for the use of

aset I %
| ast
first |———> anode [——>| anode |——O

key key
val ue val ue

"author" | | "chefsteve" | | "editor"

string table

Figure 3. Structure of a set of attributes

the existing file system [1]. These system calls consist of re-
lational link creation, relational link removal, setting link at-
tributes, returning the set of corresponding links to a file, and
creating a directory structure. The setting and getting of file
attributes were implemented using the getxattr() and setxattr()
system calls [1].

3.2. The Relational Database

Figure 4 shows the relational database schema of the afore-
mentioned native data structures, and also shows how each at-
tribute in each schema relates to other attributes. The database
schema contains four schemata: inode that represents a table of
inodes, [node that represents a table of links, i_anode that rep-
resents a table of extended attributes for inodes, and [_anode
that represents a table of extended attributes for links. The in-
ode schema contains an attribute containing the inode number,
as well as individual attributes containing traditional inode data
determined by the POSIX file system specification. The In-
ode schema contains attributes containing a source inode num-
ber, a destination (target) inode number, and a ID value for
the link used for relating each Inode tuple to 1_anode tuples.
The i_anode schema contains an attribute representing the cor-

e iNOde NUMber [1D =

traditional inode source inode

metadata (stored
as separate values)

target inode

inode Inode
e inode link ID -
key key
value value
i_anode I_anode

Figure 4. Relational database schema

responding inode number, as well as an attribute each repre-
senting a key and value; both attributes being character strings.
The 1_anode schema only differs from the i_anode schema by
the fact that the corresponding inode attribute is replaced with
a corresponding Inode attribute.

Each schema in the relational database schema contains an
index on the attributes that represent their ID value (e.g., the in-
ode schema has an index on the inode number). Indices vastly
accelerate queries in which the attribute that is indexed is spec-
ified [6]. Since the queries that we have implemented in our
test cases rely on the relations between different schema and
their attributes, and since ID values are used in the database
to relate schema, indices will be a requirement in the design
of our database. The drawback to indices is that they increase
the time of insertions, deletions, and updates of those relations
[6]. However, we anticipate that the file system will be queried
more often than users would insert, delete, or update files.

Each system call in the existing file system has been rewrit-
ten as an equivalent using SQL queries. For example, adding
an extended attribute to a file requires two tasks: an inode
lookup for the file path given, as well as an INSERT statement
to the i_anode table, along with a key string and a value string.

4. Implementation

The relational database is implemented using SQLite.
SQLite is a lightweight, public domain C library that does not
require any configuration, can easily be embedded into an ap-
plication, supports databases up to two terabytes in size, and
has a footprint of less than 250 kilobytes [5]. SQLite also sup-
ports in-memory relational databases, which is a requirement
for our research. We feel that SQLite’s support for in-memory
relational databases, as well as its small footprint and public
domain status, is the best choice of database API for our re-
search.

We decided that we will test the performance of the various
SQL queries needed to emulate the system calls before actually
implementing the file system. By analyzing the performance of
the SQL queries in the relational database before implement-
ing them in an actual file system, we will be able to optimize
our database queries and schema in our future research. There-
fore, our results are not based on an actual file system; they are
based on the speed of each system call implemented with SQL
queries.

5. Results

The relational database was implemented and evaluated on
a Sun workstation running the Linux kernel 2.6.9-ac11. The
system is configured with an AMD Opteron 150 processor run-
ning at 2400MHz and one gigabyte of RAM. The version of
SQLite used for the relational database is SQLite 3.3.6. The

relational database was compared with the tests of the existing
file system, which was tested on the exact same system [1]. All
of the relational database tests were ran using an in-memory
database, and for each test, the database was freshly created.

5.1. Standard File System Operations

We tested the relational database for six standard file sys-
tem operations: creating a directory tree, creating files, setting
extended file attributes, and retrieving extended file attributes.
In order to directly compare these tests to the existing file sys-
tem, we created trees of k directories, n files per sub-directory
(there are no files in the root directory, however), and a depth
d.

Figure 5 shows a graph comparing the tests of the existing
file system to the tests of the relational database. In the area
of file creation, the relational database is competitive with the
existing file system. Directory tree creation is slower in the
relational database than with the existing file system. However,
we would like to note that in the relational database, creating
an empty directory uses the exact same steps as creating a file.
The setting and retrieval of file attributes, however, is much
slower with the relational database than with the existing file
system.

Why are the tests for setting and retrieving file attributes
are magnitudes slower than their native data structure counter-
parts? In those tests, the directory tree must be traversed in
order to obtain the inode numbers of the subdirectories and the
directory’s files. In order to get information about subdirecto-
ries and the files of the current directory, we have to retrieve a
table of all of the links of the current directory (which is done
by calling the sqlite3_get_table() function and sending it a SE-
LECT query, which dynamically allocates a string table con-
taining the tuples that match the query), and check the links
to make sure that link is either a subdirectory or a file within

1000 4

100

pgLFs
10 4
@ Database

Time (seconds)

0.1 4

Create Set2 Get2 Set20 Get20 Create
Files Attrs Attrs Attrs Attrs Dir Tree

Tests

Figure 5. Time required for various tests on a
directory tree where k=5, d =5,and n = 4. 16,520
total files were created.

that directory. To make these tests easier, we didn’t combine
these links with any relational links, and we took advantage of
the fact that the first & links of the directory are subdirectories,
while the last n links of the directory are files. Still, the com-
bination of dynamic allocation of memory for retrieving tables
obtained through SQL queries, as well as processing that data,
is the reason why our tests are much more expensive than the
tests for the native data structures.

5.2. Link Operations

We attempted to test the relational database for relational
link operations: creating random links between files, setting
link attributes, and deleting links. However, we ran into some
major performance issues related to directory traversal. In or-
der to convert a path name into an inode number, which is done
in all of our relational link operations, the directory tree must
be traversed. For each directory in the path (including the root
directory), the database does a query on that current directory,
and then moves on to the next directory in the path. We have
calculated that the average time of each SQL query is 21.5 ms.
In a directory tree where k =5, d = 5, and n = 4, there is an
average of 5.75 queries per path, which means that it takes an
average of 123.625 ms to execute the SQL queries for the aver-
age path. Since there are 3,906 directories in this directory tree,
and since each relational link test operation requires that the
inodes for both a source path and a target path are found, the
total estimated time that it will take to perform inode lookups
for 15,620 links is 965.7585 seconds, or 16 minutes and 5 sec-
onds.

Table 1 compares the performance of relational link opera-
tions of the existing file system to the estimated performance
of the relational database. We ran these tests on the relational
database without having to convert paths to inodes (we stored
all used inodes in an array in this test), and then added the re-
sults of those tests to the aforementioned estimated total time it
takes to perform inode lookups of these links. If the path name

Attrs | Test LiFS | No Traversal | With Traversal
2 Create Links 1.073 | 3.140 968.899
2 Create Attrs 1.148 | 1.094 966.853
2 Remove Links | 1.086 | 2.014 966.845
30 | Create Links 1.054 | 3.154 968.913
30 | Create Attrs 2.751 | 17.180 982.939
30 | Remove Links | 1.288 | 2.938 968.697

Table 1. Time in seconds to create 15,620 ran-
dom links over a directory tree (k=5,d =5, n
= 4) with 2 and 30 attributes on each link. “No
traversal” is the relational database tests with-
out directory traversal, and “with traversal” is
the relational database tests with the overhead
of directory traversal.

conversion overhead is ignored, then the tests of the relational
database are mostly competitive with the existing file system’s
tests. This shows the overwhelming impact that inode lookups
have on the performance of the relational database.

5.3. The Impact of Dynamic Memory Allocation

The very slow performance of much of our tests have been
affected by the amount of dynamic memory allocation re-
quired. Retrieving tables from an SQL SELECT query requires
dynamically allocating memory to create a string table. As
shown in the link operations, these queries can take as long as
15 ms. This not only includes the time required for dynamic
memory allocation, but also the time the SQLite library uses to
parse, compile, and execute the SQL query. There also seems
to be no way to avoid dynamically allocating memory for ta-
bles retrieved by SQL queries, since there is no support for
pre-allocated arrays if the application knows how many entries
are in the database in advance.

6. Related Work

One attempt at using databases for handling metadata in
file systems was the Inversion File System. The Inversion File
System was a database file system that handled both file data
and file metadata [4]. The file system was implemented with
the POSTGRES 4.0.1 database. The Inversion File System
also supported features such as transactions, fine-grained time
travel, fast recovery, and ad hoc file queries on both the meta-
data and the file data. It performed at between 30 and 80 per-
cent of the speed of the native ULTRIX file system over NFS,
when tested for the same operations [4].

Apple Spotlight is an example of a database on top of the
file system that supports extended metadata [3]. Spotlight in-
dexes files in the file system and stores their metadata in a
database. The metadata stored by Spotlight is dependent on
importers that read the file format and “imports” the metadata
to the Spotlight database. There are two big differences be-
tween Spotlight and our research. One major difference is that
Spotlight doesn’t support relational links between files. An-
other difference is Spotlight is built on top of the file system
in Mac OS X, while our research is interested in building a
file system around our database (although the actual file data
won’t be stored in the database). Since Spotlight is built on
top of a file system rather than an integral part of a file system,
Spotlight doesn’t have to deal with directory traversal, file and
directory creation, and other file system-level operation lev-
els that our relational database has to support. The Spotlight
database is implemented with Apple Core Data, an API that
“provides a general-purpose data management solution devel-
oped to handle” data for various Mac OS X applications [2].
One of the databases that Core Data supports is SQLite, which
is the exact same database that we are using in our research.

7. Future Work

We need to optimize the performance of our database. First,
we need to find the optimal schema for our database. Next, we
need to review our SQL queries and also optimize them. We
also need to further investigate the impact of dynamic memory
allocation and find some ways to bypass or mitigate the effects
of it. After we have finished optimizing our database, then
we will implement it as an actual file system and compare its
performance to other file systems. We would like to see how
a file system created based on our research would perform in
real-world situations.

8. Conclusion

Despite some setbacks with performance, our research still
looks promising. The need for modern file systems to handle
extended metadata is still great, and we still feel that databases
are the way to go. However, we have a lot of optimization to do
before we are able to proceed further with this research. The
performance penalties are much too great for this research to be
used in a serious project as of now. However, after optimizing
our database schema, we feel optimistic that our results would
be more competitive with the existing file system and other
current file systems.

9. Acknowledgments

I would like to thank Carlos Maltzahn for his extensive
amount of suggestions and support with my research. I would
also like to thank Scott Brandt for his suggestions and his sup-
port, as well as Kevin Greenan for answering all of my ques-
tions about the test cases used in the existing file system.

This work was completed as part of the University of Cal-
ifornia, Santa Cruz’s SURF-IT (Summer Undergraduate Re-
search Fellowship for Information Technology) program, an
NSF CISE REU Site. This paper is based upon work sup-
ported by the National Science Foundation under Grant No.
CCF-0552688.

References

[1] Sasha Ames, Nikhil Bobb, Kevin M. Greenan, Owen S.
Hoffman, Mark W. Storer, Carlos Maltzahn, Ethan L.
Miller, and Scott A. Brandt. LiFS: An Attribute-Rich File
System for Storage Class Memories. In 23rd IEEE / 14th
NASA Goddard Conference on Mass Storage Systems and
Technologies, May 2006.

[2] Apple Computer. Developing with Core Data.
http://developer.apple.com/macosx/coredata.html, March
2006.

(3]

[4]

(5]

(6]

Working with Spotlight.
June

Apple Computer.
http://developer.apple.com/macosx/spotlight.html,
2006.

Michael A. Olson. The Inversion File System. In Pro-
ceedings of the Winter 1993 USENIX Technical Confer-
ence, pages 205-217, January 1993.

SQLite. SQLite Home Page.
September 2006.

http://www.sqlite.org/,

Jeffrey D. Ullman and Jennifer Widom. A First Course in
Database Systems. Prentice-Hall, 1997.

