
DATA COLLECTION: PUTTING IT ALL TOGETHER. THE SCORPION
STATISTICS COLLECTION SYSTEM.

Daniel Olivares
dolivares@humboldt.edu

Department of Computer Science
Humboldt State University

1 Harpst Street, Arcata, CA 95521

Dr. Katia Obraczka
katia@soe.ucsc.edu

Department of Computer Engineering
University of California, Santa Cruz

1156 High Street, Santa Cruz, CA 95064

Abstract

As the technology and needs of today’s
networks grow, transmission and collection of
information remains a vital focus for those
managing these networks. The Santa Cruz
mObile Radio Platform for Indoor Outdoor
Networks (SCORPION) testbed was created to
test current and up-coming technology and
applications to insure continuing functionality
and growth as networking needs change. At the
core of the testbed is the storing and collection
of data. The SCORPION statistics collection
system is designed to streamline the process of
data storage and collection and compliment the
unique testing features the testbed provides by
promoting a smooth transition between testing
and analysis of test data.

Keywords
Sensor networks, testbed, networking, internet,
logging, statistics, data collection.

Introduction
SCORPION [1] is a heterogeneous wireless

networking testbed consisting of various
mobile nodes. The SCORPION project is
intended to be used to test and evaluate
wireless network protocols such as multi-radio,
multi-channel medium access control, multi-
hop wireless ad-hoc routing, disruption-tolerant
routing, disruption-tolerant message delivery,
and protocols with varying connectivity. The
unique features of the testbed network allow
testing of current and next-generation network
applications in real world conditions. As the
size of the network grows, manual collection of
logs for each node becomes a time-consuming
process. Also, due to their mobile nature,
connectivity becomes an issue as nodes move
in and out of signal range. To overcome these
issues and improve the data collection process

logging on the SCORPION testbed will be
standardized by using an implementation of
syslog to store logs, which include GPS,
network, and experimental protocol data, in an
easy to parse and human readable format.

Background
The core structure of the SCORPION

testbed consists of various nodes which range
from mobile briefcases (which can be carried
by people or attached to automated vehicles) to
mounted on buses or installed in aerial vehicles
(model plane or helicopter nodes), or even
mounted on mobile iRobot nodes. Currently,
there can potentially be up to 88 active nodes at
a given time. Various projects using the testbed
include the Epidemic Routing Protocol for
Delay Tolerant Networks, UCSC’s Bus
Tracking System (BTS), and RTT estimation
using the Experts Algorithm all of which make
use of the testbed nodes in order to test and
collect statistics of interest.

Figure 1. The SCORPION testbed consists of many
mobile nodes.

Helicopter Node

Airplane Node

Bus Node 1

Bus Node 2

iRobot (Roomba) Node

Briefcase Node 1

Briefcase Node 2

Briefcase Node 3

User 2

User 1

Data Collection Obstacles

Due to the scope of SCORPION, manual
collection of logs from each node can be a
time-consuming process due to currently up to
88 nodes active at any given time and the ability
to increase in size with the addition of new
hardware. Originally, the process of collecting
log information from the testbed nodes
required each node to be brought back to the
lab in order to connect and transfer the logs for
analysis.

As of summer 2009 nodes could be
accessed, including transferring of log
information (figure 2), wirelessly and
configured using a suite of node management
tools. The management tools drastically
improved data collection, but collection still
remains a time-consuming process. An
additional problem is that because of nodes’
mobile nature they may not be in range, or
move out of range during transfer of
information.

Figure 2. Manual Collection by wirelessly connecting to
each node.

Related Work

 SCORPION is not the only testbed
network currently implemented. Each testbed
network focuses vary to different degrees. To
name a few, Harvard’s sensor network testbed,
called MoteLab [2], is designed for the testing
of sensor network applications by users.
MoteLab is unique in that it allows users to
upload software to nodes and schedule tests to
be ran and are given results upon job
completion. The network emulation testbed,
emulab [3], is part of the School of Computing
at the University of Utah and is designed to
allow emulated experiments and live internet
experimentation. Last, the Orbit-Lab Testbed
[4] is a collaborative testbed project designed to

be a laboratory emulator and field trial testbed
with goals of achieving reproducible testing as
well as evaluating experimental protocols in
real-world settings.

Methods
 The work done to help streamline the
process of data collection on the SCORPION
testbed included modifying how logging was
handled as well as incorporating a new
management tool which will be used to collect
node logs in an automated fashion (figure 3),
eliminating the time-consuming manual process
currently in place.

Figure 3. Automated collection using the Collection Tool.

Logging
Logging of information on the

SCORPION testbed can be a difficult task.
Currently, there are three types of information
of interest which includes GPS information,
Network state information, and experimental
protocol information. Handling of this
information is broken up into three modules.
First is the GPS syslogger module; responsible
for collecting GPS time, location (latitude and
longitude), raw altitude, number of satellites
present, and speed (in knots).

Next, the network state monitoring module
logs the MAC address of neighbors, connection
durations, signal strengths, and number of
bytes sent and received. The network statistics
are collected by using the libtrace library [5],
using C code, to decode and parse the 802.11
wireless and Radiotap headers, and then logged
using the syslog custom module.

Lastly, the custom protocol logging module
can be used to log any information of interest
and used with a simple method called logInfo.
logInfo was designed to be used much like the
standard C method printf. For example,
logInfo("formatted message: %d, ...", args, ...)

where the formatted message can contain any
information relevant to the user, and the test
values are passed in as arguments. The output
log would be in the format of <System date and
time> <computer-name> <PROTOCOL_NAME>[<PID>]:

<User Formatted message>. This method of
formatting allows the user to customize the
logs in a way that will simplify parsing and
analysis of the desired data.

Each node runs a build of Debian Linux
and has server daemon software running in the
background listening for node management
signals. The logging software, written in C, also
runs in the background logging statistics from
the GPS device attached to each node.

The first step in streamlining information
gathering on each node was to use syslog to
standardize data logging on the SCORPION
testbed. Syslog was chosen for use due to the
syslog subsystem being fully developed and
ready to use in all versions of Linux. With this
in mind, it allows the custom logging modules
to be dropped into any Linux system without
having to make changes to the system core,
allowing for greater portability for future use.
As data is logged over time, storage becomes a
major issue when logs cannot be moved off
nodes in a timely manner. Syslog handles this
problem by compressing log automatically
which drastically decreases storage needed for
log files.

In addition to standardizing logging, a
custom method (loginfo) was created to allow
easy logging of experimental and protocol-
specific information and designed to abstract
the details of syslog use. Using the loginfo
documentation, the method can be easily
dropped into existing code with minimal
changes to take advantage of syslog’s features
and logging capabilities.

Management
Once the logging of information is handled,

collection of the logs is handled by an easy to
use module, created using existing management
tools in addition to custom code, called node
get stats. This module collects all logs related to
running experiments in an automated manner.

Log collection is achieved by having the
user log onto the “Testbed” network. The user
then issues the nodegs command which then

messages all available nodes to send
SCORPION data logs to the command issuing
client.

The nodegs tool is a bash script which
operates by polling the Testbed network for all
available nodes using the nodels node
management command, issuing the noderun
command to set file permissions allowing the
SCORPION logs to be copied by other users,
and finally by issuing the scp (secure copy)
command to copy all SCORPION logs from
each node to the client machine. Currently the
nodegs command issues these commands
sequentially but simplifies the log collection
process by automating the process.

Figure 4. An overview of the SCORPION Statistics
Collection System.

Future Work
The next big step for the management tool

suite would be to incorporate handling of
disruption tolerant network functionality.
Currently it is assumed that all nodes within
range will remain connected during the entire
collection process. Also, the current collection
tool only works for nodes within range and
connected to the same Testbed network.
Future functionality should be expanded to
allow nodes to communicate with each other
and pass the collection message as well as the
desired logs to the user. Finally, once these
tools are complete they will need to be
integrated into all testbed nodes and not just
the few used for testing.

Conclusion

The combination of logging, management,
and collection tools allows the SCORPION
testbed data to be analyzed in both current and
future projects for improving and creating
reliable network applications.

Acknowledgments

This work was sponsored by the National
Science Foundation, SURF-IT (surf-
it.soe.ucsc.edu) Research Experience for
Undergraduates Program. NSF grant Award
No. CNS-0852099. We would also like to thank
the University of California, Santa Cruz.
Mentor: Professor Katia Obrazcka, and
graduate mentors: Vladislav Petkov, Kerry
Veenstra, and Bruno Nunes.

References

[1] SCORPION Testbed network
http://inrg.cse.ucsc.edu/inrgwiki/Scorpion%2
0Testbed

[2] Harvard Sensor Network Testbed
http://motelab.eecs.harvard.edu/

[3] Network Emulation Testbed
http://www.emulab.net/

[4] Orbit-Lab Testbed
http://www.orbit-lab.org/

[5] Libtrace library
http://research.wand.net.nz/software/libtrace.
php

