Designing an Obstacle Course Game to Motivate Physical Activity among Teens

Shannon Parker
Advisor: Sonia Arteaga ○ Research Advisor: Sri Kurniawan

Purpose
- Address the overall decrease in physical activity among teenagers.
- Design and implement an obstacle-type game application on the iPhone OS that encourages physical activity in a fun and challenging way.
- Conduct a field study to examine participants’ reaction to the application and their attitudes about motivating factors to sustain physical activity.

Methods
- Provide an interactive and engaging game to encourage usage.
 - Incorporate an obstacle-based game.
 - Use the iPhone accelerometer to recognize movements.
 - Implement timed activities.
- Set up a Jungle Course game application.
 - Include two modes: Walking and Obstacle.
 - Walking mode determines the number of steps to advance to the Obstacle mode.
 - Obstacle mode includes jungle-type obstacles to complete in a timely manner to advance levels.
 - More points are given if tasks are completed in shorter amounts of time.
 - Game goals are to advance levels and obtain high scores.
- Conduct a focus group to examine participant usage.

Experiment
- Subjects played Jungle Course for 15 minutes.
- Two subjects played with a companion.
- One subject played alone.
- Application usage recorded and analyzed.

Results
- Thematic Network of the feedback from the focus group after the experiment.
- Observe and collect feedback of teenagers’ interaction and experience with Jungle Course.

Future Work
- Nonfunctional Requirements
 - Incorporate various themes (e.g., jungle, island, forest).
 - Include audio notification throughout the game.
 - Implement a physical activity log.
- Functional Requirement
 - Increase accuracy of motions detected by accelerometer.
 - Incorporate various physical activity movements.

Acknowledgment
This work was sponsored by the National Science Foundation, SURF-iT (surf-it.soe.ucsc.edu) Research Experience for Undergraduates Program. NSF grant Award No. CNS-0852099. In addition, thanks to Sonia Arteaga, Sri Kurniawan, and the University of California, Santa Cruz.