Introduction

* HDLs used to design digital circuits

* Popular HDLs lack modern programming
constructs and are inexpressive

* Harder to program complex circuit designs

* Goal: Low-level functionality with high-level
expressiveness
* Pipeline programming model
* OOP model with classes, traits and
inheritance
* Type inference system for less boilerplate
code
3 top-level blocks:
e Stages: describe operations on input
data
* Pipes: connect stages together
* Classes: define custom data types

load=Inl clk M

I R

4 bit ragister

f“+ 4

clk

0
clk
% i/ a rlk
Q-1 shift g Y load

. 4 hit reqgistar
= Control unit 9

A\imux / ackd T ™| addsub unit {4 bit)
Inl sub T =

count ;J_,il.

—]

dc L
Ig J Inl
clear=0 clk Ppreset
l l l anable
0
. clk
2 bit down 51 30 JL' i
' 1

counter
! I
{J) A (4 bit register) | Q (4 bit register) | (1 bit)

0 [
- load '_:ID_
Inl

Figure 2: Booth Multiplier circuit
Source: COA Virtual Lab

Verilog

ﬁoth Multiplication Algorithm \
module booth(m, r, en, reset, p, last);

input [7:8] m;
input [7:8] r;
input en;
input reset;

output [15:0] p;

reg [15:0] p;
reg last;

always @ (posedge en or posedge reset)
if (reset) begin
p <= 6;
end else if (en) begin
p <= r & 255; // oxff
last <= 0;
repeat (8) begin
if (p&l == 0 && last == 1) beqgin
D <=p + (m << 8);
end else if ((p&l) == 1 && last == 8) begin
p <=p + ((-m) << 8);

end

last = p & 1;

p=p>> 1
end

o
endmodule
Research Goal

* How does Pyrope compare to other
HDLs?

* Verilog: industry standard language
 Compare expressiveness and
verbosity

* Find awkward syntax

e Suggest needed language constructs

/

Evaluating Pyrope

A Modern Hardware Description Language

Theodore Sudol (TCNJ), Dr. Jose Renau (UCSC), Blake Skinner (UCSC)

ﬁooth Multiplication H]gor‘ithm

stage boothAdd:
reset: @P =r

if (P&l, b) == (0,1):
@ += (m << 8)

elif (P&l, b) == (1, 0):
@P += (-m << 8)

stage boothShift:
b =@P & 1
@ = @P >> 1

pipe booth:
m as bits:8
r as bits:8
@P as bits:16
b as bits:8

loop boothLoop:

boothAdd -> boothShift
boothLoop(8)

Figure 1: Pyrope vs. Verilog — Booth
Multiplication Algorithm.

Above: Pyrope implementation.
Right: Verilog implementation.

Method: Use Cases

 Compare two languages by writing
programs in both of them

* Two use cases: Booth Multiplication
Algorithm and Elliptic Curve
Cryptography

* Mitigate bias by alternating first
language for each program

Baskin
Engineering

* Pyrope requires fewer and shorter lines of
code

* Pyrope implementations written quicker

* Other tests found Pyrope has < 25% lines of
code for complex programs

* Easier for HDL novices to use, especially if
familiar with Python or Ruby

* Improved Pyrope syntax by adding stage
loop

R
GCD 27 17 37

Accumulator 13 7 46
Parity 13 4 69
Router 178 39 75
FPU 4017 726 77
XALU 2901 294 90

Figure 3: A comparison of various digital
circuits in Verilog and Pyrope. Sizes are
measured in lines of code (LoC).

* Pyrope is still under development

* More use cases to continue evaluation as
language evolves

* More complex and synthesizable tests

