
Evaluating Pyrope 

Theodore Sudol (TCNJ), Dr. Jose Renau (UCSC), Blake Skinner (UCSC) 

Introduction 

• HDLs used to design digital circuits 
• Popular HDLs lack modern programming 
constructs and are inexpressive 
• Harder to program complex circuit designs 

Pyrope 

• Goal: Low-level functionality with high-level 
expressiveness 
• Pipeline programming model 
• OOP model with classes, traits and 
inheritance 
• Type inference system for less boilerplate 
code 
• 3 top-level blocks: 

• Stages: describe operations on input 
data 
• Pipes: connect stages together 
• Classes: define custom data types 

Results 

• Pyrope requires fewer and shorter lines of 
code 
• Pyrope implementations written quicker 
• Other tests found Pyrope has < 25% lines of 
code for complex programs 
• Easier for HDL novices to use, especially if 
familiar with Python or Ruby 
• Improved Pyrope syntax by adding stage 
loop 

Future Work 

• Pyrope is still under development 
• More use cases to continue evaluation as 
language evolves 
• More complex and synthesizable tests 

Figure 2: Booth Multiplier circuit 
Source: COA Virtual Lab 

// Booth Multiplication Algorithm 

 

module booth(m, r, en, reset,  p, last); 

 

input [7:0] m; 

input [7:0] r; 

input en; 

input reset; 

 

output [15:0] p; 

 

reg [15:0] p; 

reg last; 

 

always @ (posedge en or posedge reset) 

  if (reset) begin 

    p <= 0; 

  end else if (en) begin 

    p <= r & 255; // 0xff 

    last <= 0; 

    repeat (8) begin 

      if (p&1 == 0 && last == 1) begin 

        p <= p + (m << 8); 

      end else if ((p&1) == 1 && last == 0) begin 

        p <= p + ((-m) << 8); 

      end 

      last = p & 1; 

      p = p >>> 1; 

    end 

  end 

endmodule 

Verilog 

Figure 1: Pyrope vs. Verilog – Booth 
Multiplication Algorithm. 
Above: Pyrope implementation. 
Right: Verilog implementation. 

# Booth Multiplication Algorithm  

 

stage boothAdd: 

  reset: @P = r 

 

  if (P&1, b) == (0,1): 

    @P += (m << 8) 

  elif (P&1, b) == (1, 0): 

    @P += (-m << 8) 

 

stage boothShift: 

  b = @P & 1 

  @P = @P >> 1 

 

pipe booth: 

  m as bits:8 

  r as bits:8 

  @P as bits:16 

  b as bits:8 

 

  loop boothLoop: 

    boothAdd -> boothShift 

  boothLoop(8) 

Pyrope 

A Modern Hardware Description Language 

Design Verilog LoC Pyrope LoC % Reduction 

GCD 27 17 37 

Accumulator 13 7 46 

Parity 13 4 69 

Router 178 39 75 

FPU 4017 726 77 

xALU 2901 294 90 

Method: Use Cases 

• Compare two languages by writing 
programs in both of them 
• Two use cases: Booth Multiplication 
Algorithm and Elliptic Curve 
Cryptography 
• Mitigate bias by alternating first 
language for each program  

Research Goal 

• How does Pyrope compare to other 
HDLs? 
• Verilog: industry standard language 
• Compare expressiveness and 
verbosity 
• Find awkward syntax 
• Suggest needed language constructs 

Figure 3: A comparison of various digital 
circuits in Verilog and Pyrope. Sizes are 
measured in lines of code (LoC). 


