
Pyrope Usability and Efficiency versus Verilog

Teddy Sudol
The College of New Jersey

2000 Pennington Road
Ewing, NJ

sudolt1@tcnj.edu

ABSTRACT
Pyrope is a new hardware description language designed to bring
modern language features and expressiveness to HDLs. The goal of
this project was to evaluate its usability for programmers who are
not experienced with other HDLs. Use cases were written to com-
pare Pyrope to Verilog, another popular HDL. Pyrope programs
were found to require fewer lines of code and less development
time than Verilog programs. These results suggest that Pyrope is an
efficient and highly usable language for new HDL programmers.

1. INTRODUCTION
Hardware Description Languages (HDLs) are programming lan-
guages used to develop and simulate digital hardware systems. By
providing language constructs that abstract away the basic aspects
of digital design, designers can be more productive and focus on
the big picture of large-scale digital systems.

However, current hardware description languages do not have the
modern programming constructs of other modern programming lan-
guages. Pyrope, a new HDL, was created to address this issue. In-
spired by Python and Ruby, Pyrope is a high-level, expressive lan-
guage that incorporates modern language constructs such as global
type inference. It includes features that are specific to the domain
of HDLs; for example, Pyrope automates clock and reset signal
management. The goal of the Pyrope project is to modernize hard-
ware description languages and bring new features to this domain.
Section 3.2 explores the features of Pyrope in depth.

Previous work with Pyrope compared it to Verilog and other HDLs
in terms of program length (lines of code). (See section 2) Another
angle of comparison is the usability of Pyrope. Specifically, is Py-
rope easier to use than Verilog for someone who has never used
either one?

These questions were investigated by writing use cases. Use cases
are simple programs that succinctly show capabilities of a language
or other system in a limited environment. They capture the pith of
a language without requiring exhaustive coverage of its features.
Pyrope and Verilog were compared by two metrics: the length of

the programs in lines of code and the length of time required to
write the program. The particular use cases are discussed in section
3.3, and section 4 compares the results thereof.

2. RELATED WORK
Much of the work on Pyrope is encapsulated in Blake Skinner and
Dr. Jose Renau’s paper Pyrope [5]. When compared with other
hardware description languages, namely Verilog and Chisel, Py-
rope was found to create shorter programs. The reduction com-
pared to Verilog programs ranged from 37% (an implementation
of a Greatest Common Divisor (GCD) circuit) to 90%. The re-
duction compared to Chisel was more dramatic and ranged from
11% (again the GCD circuit) to 92%. (In one case, a filter circuit,
the Pyrope and Verilog programs were the same length while the
Chisel program was longer.) On average, Pyrope showed an 81%
reduction versus Verilog and a 56% reduction versus Chisel.

3. METHODOLOGY
3.1 Verilog
At first blush, Verilog’s syntax bears a strong resemblance to C
code. While the language does have an imperative feel, it has sev-
eral core features that differentiates it from other programming lan-
guages. Verilog programs focus around modules and the interac-
tions between them. A module defines a circuit or subsystem. The
definition includes the circuit’s inputs, outputs and internal regis-
ters. Another section of the module lists the circuit’s behavior. This
section is similar to C code and uses the usual paraphernalia of con-
ditional statements, variables and function calls. Each module can
be linked to other modules to make a complete system [2].

Verilog requires explicit typing for its variables. Each input, output
and register is assigned a type, which is often a certain length of
bits. For example, an 8-bit integer input called x is defined by
input [7:0] x;
Output values and registers are similarly defined with the output
and reg keywords. Single-bit variables simply discard the [size]
component. Every variable must be explicitly typed in the module.

The behavioral section of the module definition generally starts
with a timing signal. For example, always @ (posedge clk or
posedge rst) indicates that the module activates when the incom-
ing clock (here clk) or reset signal (rst) is on its rising edge or
transitions from 0 to 1. This connects the behavior of the module
to the clock the manages the whole system.

In addition to modules, Verilog provides functions and tasks. These
two constructs have a few key differences. Both can have any num-
ber of inputs, but tasks can have any number of outputs while func-

1



tions are limited to only one. Tasks can also include timing delays,
i.e. they can be linked to the clock with posedge statements. Func-
tions, on the other hand, cannot have timing delays.

3.2 Pyrope
Pyrope is designed around the pipeline programming model. In
this model, data flows from operation to operation; the output of
one operation is the input to the next. Each operation processes the
data in some way. Digital systems are therefore represented as a
series of transformations over the input [5].

Pyrope uses three top-level blocks to define the pipeline: stages,
pipes and classes. Stages are analogous to the operations of the
pipeline. The inputs and outputs of the stage are implicitly de-
clared; any value that is read is an input, and any value that is writ-
ten to is an output. For example,
A = B + C
implicitly declares B and C as inputs and A as the sole output. Un-
like Verilog, the reset and clock inputs are handled automatically by
Pyrope, and they do not need to be declared as inputs to the stage.
The reset signal is occasionally defined explicitly to elucidate how
the stage should be reset.

The second block type is the pipe. Pipes, as the name suggests,
define the actual data pipeline of a program. A pipe connects stages
together to make a full program by listing the order of the stages
in the pipeline. Each stage is connected to the next using the ->
operator. This operator automatically connects the output of the
first stage to the inputs of the second, though these connections
may be listed explicitly. Pipes can connect stages in parallel and
even link other pipes together in a nested configuration.

Classes, the third and final top-level block, are the core of Pyrope’s
object-oriented programming model. Classes can define class vari-
ables (preceded by an @ symbol) and methods, similar to Ruby
classes. Pyrope also includes traits for further extending the func-
tionality of classes and objects by adding single-instance function-
ality.

In stages, inputs and outputs are declared when they’re used. In
pipes, inputs and outputs are linked together stage-by-stage. How-
ever, the sizes of these variables are not explicitly defined any-
where! Thanks to Pyrope’s global type inference, the programmer
never needs to explicitly declare the size of variables. Instead, the
Pyrope compiler determines the correct sizes for the variables while
processing the file. If the compiler sees A = B + C, for example,
it can infer that A must be large enough to contain both B and C and
therefore makes A as large as the sizes of B and C combined. Py-
rope has other operators to handle situations such as overflow; A =
B :+ C is an overflow add of B and C, and A will be the same size
as the larger of B and C. This allows, for example, 8-bit counters
to always be 8-bits long instead of growing depending on the input
size. Otherwise, the compiler would complain that the operation
would change the size of the counter, which is a fatal error in a
strongly-typed language like Pyrope.

Of course, the type inference process must have some base sizes to
build upon. At some point the programmer must define the sizes of
B and C if the compiler is to infer the size of A. For example, three
stages S0, S1 and S2 are defined with no explicit types. Then two
pipes are written. Pipe P0 links the three stages together and de-
clares their input values as 4-bits wide. Pipe P1 also links the three
stages, but instead lists their input values as 8-bits wide. The com-

piler can use the same three stages to make two different pipelines
that only differ in terms of the range of values they can process.
If the programmer wants to use 16-bit integers or some other size,
they simply create a new pipe with a new list of input sizes. The
compiler takes these input dimensions and infers the sizes of all
the variables and values used in the stages themselves. That is the
power of the global type inference.

3.3 Use Cases
3.3.1 Booth’s Multiplication Algorithm

Booth’s Multiplication Algorithm is a method for multiplying two
signed integers using only addition and bit shifting [3]. Due to the
simplicity of its operations and design, it is a useful algorithm for
teaching hardware description languages.

The algorithm takes as input two numbers of arbitrary length—the
multiplier and the multiplicand. The result has a length equal to the
sum of the lengths of the two inputs. The calculation is performed
by adding either the multiplicand or the negated multiplicand to
the multiplier based on the final pair of bits of the multiplier. The
result of the addition is then shifted once. This algorithm is easily
represented in hardware by splitting the process into two stages,
namely “add” and “shift”.

3.3.2 Elliptic Curve Cryptography
Elliptic Curve Cryptography is a public-key cryptography method
that uses the complexity of elliptic curves to secure information.
Like the Diffie-Helman (DH) encryption method, it relies on the
difficulty of finding discrete logarithms as its basis. ECC promises
more security than other algorithms for the same key size, thus
making it an important facet of security research. Please refer to
An Elliptic Curve Cryptography (ECC) Primer for more informa-
tion about this system [1].

An HDL implementation of the ECC algorithm can be somewhat
complex. The algorithm is based around modular arithmetic, and
special operations must be written for each step, up to and including
the mod function itself. (While this function may be built into the
language, a version that can handle negative numbers is required by
algorithm and may not be available by default.) Fortunately, elliptic
curve cryptography is based around discrete logarithms and thus
does not require floating-point values, which reduces the overall
complexity of the implementation. (Pyrope, for example, does not
currently have floating-point capabilities.)

3.4 Metrics
As mentioned in section 1, the use cases evaluate Pyrope and Ver-
ilog by two metrics: lines of code and length of development time.
These two metrics are directly related to the language characteris-
tics that we are investigating, namely expressiveness and usability.
A more expressive language requires fewer lines of code to accom-
plish some goal as compared to other languages. “Usability” for
languages relates to how easily a programmer may begin using it
and how easily a generic program is written in a particular lan-
guage. For example, Verilog’s explicit typing (i.e. input [7:0]
x) may make the language seem less usable when compared to Py-
rope’s type inference. The programmer can accomplish more—and
thus have a lower development time—if the language has high us-
ability. Obviously, these two traits are connected, given that a more
expressive language will enable to programmer to write less, thus
making it more usable. The two chosen metrics can be seen as

2



Pyrope LoC Verilog LoC Reduction
Booth 20 29 31%
ECC 84 45∗ N/A

Table 1: The Pyrope use cases were shorter than their Verilog
analogues.

direct expressions of the expressiveness and usability of the target
languages.

3.5 Development Tools: Syntax Highlighting
One mild difficulty of writing programs with Pyrope was the lack
of syntax highlighting. Syntax highlighting is a common feature
in many text editors and IDEs that colors or highlights different
syntactical elements of the program. The highlighting is often ac-
complished by a script that identifies the various lexical elements
and the colors that should be used. The simplest syntax highlight-
ing scripts identify language keywords, but they can be expanded
to include function and variable names, data type identifiers, com-
ments, string literals and numeric values. Each IDE and editor usu-
ally has its own scripting language or other method for creating
syntax highlighting scripts.

Because most Pyrope code is currently written with Vim, the first
syntax highlighting script was written for that editor. Syntax high-
lighting scripts for Vim use the editor’s default scripting language,
VimScript (or VimL) [4]. syn statements (short for “syntax”) de-
fine the lexical elements to be highlighted; for example, the line:
syn keyword pyropeBlock class stage pipe
defines a group of keywords called “pyropeBlock” that matches
“class”, “stage” and “pipe”. This group is later used in a “hi” state-
ment (short for “highlight”) to indicate how the keywords should be
colorized:
hi def link pyropeBlock Keyword
The above line tells the editor to use the “Keyword” colors to high-
light the “pyropeBlock” set of lexical elements. The colors used
are defined in a separate file that specifies a full color scheme.

syn statements can be used for more than just language keywords.
The “match” keyword, when used in syn statements, allows reg-
ular expressions to define syntax patterns. These can be used, for
example, to highlight numbers, strings and comments. These syn-
tax matches are somewhat more complex than the simple keyword
matches. For example, the pattern for hexadecimal numbers orig-
inally looked for the letters a-f and the digits 0-9. However, this
would cause any variables named ‘a’, ‘b’, etc. to be colored as
numbers. Additionally, Pyrope variable declarations could have an
initial value for the variable by including a base indicator (such as
‘h’ for hexadecimal) and an initial value, e.g. h10ab, which simply
reused the pattern declared for regular hexadecimal numbers. This
was solved by redefining the hexadecimal number pattern to always
look for a leading 0x (e.g. 0x10ab) and rewriting the variable dec-
laration pattern with the number pattern included.

4. EVALUATION
4.1 Lines of Code
As explained in section 3.4, the length of the program in lines of
code, or LoC, shows how expressive a language is over the length of
a whole program. A more expressive language will require fewer
lines of code to accomplish the same goal than a less expressive
language. Table 1 contains the lines of code measurements for the
two use cases.

Pyrope Time Verilog time Reduction
Booth 12 min. 20 min. 40%
ECC 20 min. 20∗ min. N/A

Table 2: The Pyrope use cases required less time than the Ver-
ilog implementations.

In the Booth’s Multiplication Algorithm example, the Pyrope im-
plementation was found to be only 20 LoC versus 29 LoC for the
Verilog version. The resulting 31% reduction is in line with the
measurements found in other Pyrope vs. Verilog examples, as men-
tioned in section 2.

The Elliptic Curve Cryptography use case shows a very different
result. The full Pyrope implementation was 84 lines long, while
the Verilog implementation ran to only 45 lines. However, the Ver-
ilog implementation is essentially unfinished and, as such, the two
implementations cannot be compared effectively. Section 4.4 dis-
cusses the issues associated with this use case.

Another metric for evaluating expressiveness in a programming
language is line length. While it was not a goal of this project
to evaluate the target languages for this metric, it is informally dis-
cussed in section 4.3.

4.2 Development Time
The development time for a program, or how much time is needed
to write the whole program, is related primarily to how easy a lan-
guage is to use. Easier languages mean more productive program-
mers which in turn means each program has a shorter development
time. This metric can also correlate to the expressiveness and ab-
straction capabilities of a language. This can also be expressed by
how “high-level” a language is. More expressive languages require
less code to be written. Table 2 shows the comparison of this metric
in the use cases.

The Pyrope implementation of Booth’s Multiplication Algorithm
was written significantly quicker than the Verilog implementation.
On the other hand, the Elliptic Curve Cryptography programs were
identical in terms of time. However, the caveat mentioned in sec-
tion 4.1 also applies for this metric.

One obvious issue with this metric is bias introduced by solving the
same problem twice. Verilog and Pyrope are not so dissimilar that
code written in one is not easily translated into the other. This is
more fully discussed in section 4.4.

It should be noted that development time as a metric can be highly
relative. The resulting measurements are highly individualistic in
that several factors arise from the programmer, not the language.
The programmer’s experience, both with programming in general
and with hardware description languages, is by itself a large factor
in how long a particular program will take. However, all of these
factors should be constant across the use cases and thus give con-
sistent results.

4.3 Line Length
Line length is the number of characters in a line of a program. As
with the others, this metric is largely related to the expressiveness
of the language in question. Expressiveness is effectively, “doing
more while saying less” when it comes to programming languages.
For the purposes of this project, the average line length of the use

3



cases is being considered for informal purposes only as an interest-
ing comparison between Pyrope and Verilog.

In the Booth’s Multiplication Algorithm programs, the longest Py-
rope line was 24 characters versus Verilog’s 43, excluding leading
whitespace. The lines in question:
Pyrope: elif (P&1, b) == (1, 0):
Verilog: end else if ((p&1) == 1 && last == 0) begin
Interestingly, these lines accomplish the same thing: Both are else-
if conditional statements comparing a pair of bits. These lines
also show how heavily language-syntax and -feature dependent line
length is. The Pyrope example uses a tuple to succinctly compare
the two pairs of bits while the Verilog example has to compare the
bits individually. Additionally, where Pyrope can simply use elif,
Verilog requires else if along with an end keyword to indicate
the end of the previous if-block.

It should be expected that the two longest lines in the Elliptic Curve
Cryptography programs are similar, as was seen for the Booth’s
Multiplication Algorithm use case. Due to the incompleteness of
the Verilog example, this condition is difficult to follow. The Py-
rope implementation uses an object-oriented approach, which lead
to several long lines due to using qualified names when calling class
functions. In the sections of the algorithm that both implementa-
tions have, the longest lines are nearly identical in length. This is
due to the highly mathematical nature of the Elliptic Curve Cryp-
tography algorithm. Considering that the operators are the same
between the languages, the differences in the lines comes down to
the variable names used. Considering that the lines are otherwise
nearly identical, the line length metric provides no interesting in-
sights into the languages for this use case.

4.4 Limitations
One issue of these use cases is the issue of repetition bias. The use
cases are designed to evaluate how effectively a programmer can
use the language to solve a given problem. They solve the problem
once by writing the Pyrope implementation. When they go to write
the Verilog version, they’re no longer solving the problem and are
instead translating their Pyrope code into Verilog. This introduces
bias into the measurements. When writing the first implementation,
some of the time might have been spent solving the problem, and
that time is saved when developing the second version. This could
make the second language seem better than the first language.

In the project, the bias was mitigated by alternating the first lan-
guage used. For the Booth’s Multiplication Algorithm use case, the
program was first written in Verilog and then in Pyrope. The order
was then switched for the Elliptic Curve Cryptography use case.
While this cannot fully eliminate the bias, it can at least reduce its
affect on the data.

The lack of experience in the languages is another possible con-
cern. Verilog, in particular, is a mature and widely-used language.
The code written by the programmers for these use cases could be
longer and less efficient than the code written by an experienced
user of Verilog. This largely applies to the lines of code metric,
since an expert would be familiar with potential shortcuts and other
efficiencies in the language. Development time could potentially go
either way; if the programmer could not adapt to Pyrope’s pipeline
programming model, the development time data would show longer
Pyrope development times than Verilog.

As mentioned in previous sections, the Elliptic Curve Cryptogra-

phy use case presented some difficulty to the project. The com-
plexity of the topic was the first hurdle. ECC requires a nontrivial
amount of knowledge and familiarity with modular arithmetic and
cryptography, which was outside the scope of the project. Devel-
opment proceeded with guidance from online sources, which could
be easily applied to Pyrope but not to Verilog. Due to these con-
ditions and time constraints, the Verilog implementation was not
finished. This lead to the incomplete data seen in tables 1 and 2
and the lack of comparisons between Pyrope and Verilog for the
ECC use case. From the time comparisons we see that, in the same
amount of time, the Pyrope implementation was completed but that
Verilog one was not. This suggests that the, had the Verilog ver-
sion been completed, the trend seen in the Booth’s Multiplication
Algorithm case would have continued.

5. CONCLUSION
From the data above it can be seen that, for programmers who have
never used either language before, programs written in the Pyrope
hardware description language are shorter and take less time than
those written in Verilog. The trend with program length is corrobo-
rated in the original Pyrope paper [5], though this project added the
metric of development time. While these use cases do have limita-
tions, including some amount of bias, they argue for Pyrope as an
efficient and highly usable language for HDL beginners.

6. REFERENCES
[1] An elliptic curve cryptography (ECC) primer. Tech. rep.,

Certicom Corp., June 2004.
[2] IEEE Standard for Verilog Hardware Description Language.

IEEE Standard 1364-2005 (2005).
[3] BOOTH, A. D. A signed binary multiplication technique. The

Quarterly Journal of Mechanics and Applied Mathematics IV
(1951).

[4] MOOLENAAR, B. Vim Manual, April 2011.
[5] SKINNER, B., AND RENAU, J. Pyrope.

4


