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Abstract—Nanopores are used for DNA sensing. Solid-state
nanopores, which are milled through a silicon-based substrate,
lack the atomic-level gemoetric precision of biological protein-
mediated pores. However, they show great promise due to their
greater stability and potential for modification. We developed
tools to characterize solid-state nanopores by using their resis-
tance to infer a functional diameter estimate, and developed
a rudimentary protocol for DNA translocation event detection
which is robust to signal degradation.

I. INTRODUCTION

In a nanopore sensing regime, a membrane perforated by
a nano-scale hole separates two regions, which we label cis
and trans, all immersed in an ionic solution. When a voltage
is applied across the membrane, voltage force drives a current
through the pore. This current can be measured, allowing us
to effectively measure the resistance of the pore. A general
nanopore setup can be seen in figure 1.

This regime is useful for sensing DNA, which holds a
negative charge. When DNA, with a diameter of about a
nanometer, is pulled through the pore, the current through the
pore is attenuated. This measured current attenuation indicates
the DNA translocation event.

A. Biological nanopores

There are two primary foci of research for nanopores,
separated by the chosen pore mediator: biological pores and
solid-state pores. In a biological nanopore, a pore-mediating
protein forms a precise hole in a lipid membrane. Biological
nanopores have been created and studied for decades, and their
activity is relatively well-characterized compared to solid-state
nanopores [1].

One of the greatest benefits of the biological nanopore is
the incredible similarity between pores: because the pore is
mediated by a protein, the geometry of the pore is incredibly
precise, to an atomic-scale precision. Accordingly, data from
biological nanopores lacks much of the noise characteristic of
solid-state nanopores, and characterization of individual pores
is a trivial task beyond ensuring that the pore was properly
constructed.

However, the geometric precision which characterizes these
nanopores also serves as the biological nanopore’s greatest
weakness. The biological nanopore best characterized, α-
hemolysin, is only around 1.5 nanometers across, which will
admit single-stranded but not double-stranded DNA [1]. This
geometric rigidity is difficult to overcome due to the difficul-
ties associated with protein engineering, and prevents useful
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Fig. 1. A nanopore sensing setup, where a voltage differential across the
membrane pulls DNA through a pore. Current through the pore is sensed, and
can be used to identify and characterize DNA translocation events.

experiments like sensing of nucleosomes or other DNA-bound
proteins, which would be possible with larger engineered
nanopores. Additionally, biological nanopores are relatively
unstable, at least in comparison to the resilience of solid-state
nanopores [1].

B. Solid-state nanopores

In contrast to biological nanopores, solid-state pores are
simply milled in a solid substrate, usually a silicon compound.
Because the pore is not mediated by a protein, denaturation
is not a concern; this leads to great promise for increased
portability of devices, since temperature control is less vital
to the apparatus’s proper functioning [1]. Since the pores are
milled, a large variety of diameters of pores can be created,
allowing the pore to be customized to the sensing task: small
diameter pores for sequencing, and large diameter pores for
detection of bound proteins.

Again, the pore mediator leads to significant drawbacks. In
solid-state pores, the pore milling process leads to pores with
much less precision than the pore-mediating proteins. Because
of this, there are significant differences in the signal output by
each new solid-state nanopore. Accordingly, in contrast to bi-
ological nanopores, characterization of the physical properties
of individual nanopores becomes an essential prerequisite to
understanding the signal from that pore.

Finally, our solid-state nanopore milling process yields a
nanopore diameter near 10 nanometers, which is almost an
order of magnitude larger than α-hemolysin. This means that
the noise in the signal is larger, and the attenuation of the
current signal when 1 nm wide DNA passes though the pore
is about an order of magnitude smaller.

This makes the signal processing downstream of data
capture more challenging that that for biological nanopores,



Fig. 2. A tunnelling electron microscope image of several nanopores milled
in a silicon-based membrane using an electron beam from a scanning electron
microscope. Labels on the figure give rough estimates for pore diameter and
the time the electron beam was pulsed to mill each pore. Note that pores bored
for the same amount of time differ significantly (up to 10%) in diameter.

and increases the importance of robustness to large noise and
systemic signal degradation. The increased importance of the
characterization of individual pores in this setting motivates
our development of tools to accelerate this characterization
process and diagnose problems as quickly as possible.

II. TOOLS DEVELOPED FOR PORE DIAMETER
CHARACTERIZATION

Pores milled using a timed pulse of an electron beam from a
scanning electron microscope vary significantly in size, as seen
in figure 2. In addition, at the nano scale, traditional imaging
techniques like the tunneling electron microscope image in
figure 2 tell us little about the diameter and geometry of the
pore.

Consequently, we need to use a different method to infer
the diameter of the pore. Using the resistance of the pore
to infer diameter is especially apt, as this is the functional
measurement we seek, and so systemic error arising from
differences between geometry and measurement are naturally
arrested [2].

A. Data aquisition

In order to characterize the resistance of the pore, we take
current measurements at a variety of voltages. In a typical
testing regime, for example, we step the current between 200
and -200 mV in 20 mV steps, and repeat this pattern for five
minutes, with current and voltage data taken 250,000 times
per second. This data is imported into MATLAB for analysis.
Accordingly, our tools are developed in MATLAB.

B. Measurement of resistance

We first seek to fit a line to the data in order to measure
the resistance of the pore in accordance with Ohm’s Law.
However, because there is inevitably some capacitance in the
system, we need to cull data which is not at steady-state. In the
tool we developed, we filter data by dividing data points into
bins of width greater than the impulse response time between

Fig. 3. A time series plot of the current and voltage over time. Data discarded
for not being steady-state is demarcated with gray vertical lines. Thick black
lines mark frame boundaries.

voltage change and current change and throw out all of the
data in bins for which the difference between minimum and
maximum values falls above an established threshold.

This method is very conservative, and ensures that data
taken between the voltage jump and current response (which
is locally difficult to distinguish from a true steady-state)
is thrown out. However, relatively little of the data (usually
around 1 percent) is culled, as seen in figure 3; addition-
ally, we can see from figure 4 that the culling is quite
successful in removing non-steady-state data. In addition, we
sense the boundaries between voltage stepdowns (when the
voltage jumps from -200 mV to 200 mV) and divide the data
between these boundaries into frames so that we can more
easily analyze differences that arise across the course of data
aquisition.

Once the data has been culled and divided into frames, our
tool simply plots the I-V curve. We plot data from subsequent
frames, as well as the least-square best fit line for those data,
in gradient colors in order to show any change throughout the
course of measurement. By plotting this information, our tool
allows the user to easily identify and diagnose any systemic
change in the I-V curve across the period of data acquisition.

For example, in the I-V curve seen in figure 4, we can see
that the current at the 160 milivolt step dropped steadily from
frame to frame. This indicates that the resistance of the pore is
dropping slowly over time, indicating that, for example, a pore
diameter estimate taken over a greater period of time is likely
to be larger than an estimate taken for only a short period of
time.

Finally, we calculate the best fit line for all of the data and
plot it in black, and return the slope (resistance).

C. Inference of Pore Diameter

In order to infer the pore diameter, we first need to
know the experimental conditions under which the data was
taken. Specifically, the user is prompted for the concentration
and type of salt in the buffer so that we can estimate the
conductivity of the buffer used. Because the conductivity of
electrolytes in aqueous solutions is empirically derived, it
is nontrivial to analytically convert this into a conductivity
estimate.



Fig. 4. A section of a typical I-V curve. The demonstrated lack of outliers
indicates the success of our stringent culling protocol. Data points (plotted
with “+”) and best fit lines are plotted in a red-green gradient across frames,
with the first frame in red and the last frame in green. Note the drop in
current over subsequent frames, indicating that the conductance of the pore
slowly increased over the course of data acquisition.

In our tool, we hard-code in conductivity data at a variety
of concentrations as (given by CRC Handbook) for KCl and
LiCl, the two salts we foresee using. If the user enters a
different salt, the tool simply prompts for the conductivity
data. Often, we need to interpolate between known values
of conductivity. Because conductivity curves are empirically
derived, we simply use spline interpolation in these cases.

Finally, we estimate pore diameter using the method de-
scribed by Kowalcyzk et al [2]. In short, the model assumes a
pore geometry which is hyperboloid rather than the cylindrical
geometry used in past models. This pore geometry, Kowalcyzk
et al. show, aligns better with experimental data and with
intuition about the genuine geometry of solid-state pores.

III. DNA TRANSLOCATION EVENT IDENTIFICATION

We wish to measure the duration of DNA translocation
events, the current attenuation during events, and the time
between events to characterize the functionality of the solid-
state pore.

Ideally, a DNA translocation event manifests in the cur-
rent signal as a square-wave attenuation. However, our solid-
state nanopores exhibit significant noise in the signal. In
addition, experimental setup, filtering, imperfections in the
pore, and capacitative effects all contribute to systemic signal
degradation. Due to the significantly degraded signal quality,
robustness becomes a dominant factor in algorithm choice for
the identification of DNA translocation events.

Several algorithms which were designed with piecewise
constant data in mind were rejected on the basis of the
dominant importance of robustness in our particular use case.

For example, Max Little’s methods and tools for noise
removal in piecewise constant signals [3], in which a gen-
eralized functional is created which integrates many different
denoising methods, and is minimized using a general solver
algorithm, are particularly suited to data with events which
take on a square-wave form, much like the data from a solid-
state nanopore ideally would. Unfortunately, the capacitative
effects in our data, which smooth the ideally instantaneous
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Fig. 5. Above, a time-series plot of experimental data in medium grey, with
Savitsky-Golay filtered signal in black. Below, a time-series plot of Savitsky-
Golay derivative, with identified extrema marked with “×”. In both plots,
identified events, which occur between extrema, are marked by a light grey
background.

transitions of current attenuation, violate the piecewise con-
stant assumption too flagrantly for the algorithm to adequately
cope, leading to an insufficiently denoised signal.

Likewise, Ajmandi et al’s event identification algorithm is
specifically designed for the identification of DNA transloca-
tion signals in nanopores [4]. This algorithm seeks to identify
event boundaries as extrema in the second derivative of the
signal (points of greatest convexity/concavity in the original
function). However, this algorithm relies on a stable second
derivative, which is difficult to obtain with the noise levels we
see in our data. In addition, the systemic signal degradation
we face presents a pathological case for the identification of
points of greatest convexity/concavity, which are quite variable
under this signal degradation.

Instead, our proposed event identification simply identifies
event boundaries as extrema in the first derivative (inflection
points in the original signal). Notably, in the ideal case, these
should be a constant distance away from the identified event
boudaries of Ajmandi et al., preserving the event durations
between algorithms. The pathological signal degradation that
significantly skews event boundaries for Ajmandi et al. has
mitigated effect on these event boundaries, leading to an event
identification algorithm that is very robust. Additionally, this
method, due to its simplicity, leads to fast implementation and
runtime.

Our implementation of this rudimentary event identification
algorithm uses Savitsky-Golay to filter and differentiate; we
found that this method preserves high-frequency components
but also leads to a much more stable derivative estimate than,
for example, a naı̈ve first difference.

As seen in figure 5, our implementation also plots the time-
series signal and shows identified events, allowing the user to
to fine-tune the thresholds for event detection.

IV. CONCLUSION

Solid-state nanopores, milled through a silicon substrate,
lack the atomic-level geometric precision of biological,
protein-mediate pores, but show great promise due to their
increased stability and potential for modification. We created
a flexible program which gives pore diameter estimates for a
variety of experimental conditions, and allows easy extensibil-
ity to unforeseen experimental conditions. Additionally, we de-
veloped a rudimentary DNA translocation event identification
algorithm which is more robust to systemic signal degradation
than existing algorithms. These tools can be used to begin the



characterization of new nanopores, allowing the more accurate
estimate of pore properties and the rapid diagnosis of problems
with experimental setup.
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